Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)
Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)
\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)
\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)
Theo Viet đảo, \(tana;tanb\) là nghiệm của:
\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)
\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)
\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)
1.
Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:
\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)
\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)
\(\Rightarrow2tana=tan\left(a+b\right)\)
2.
Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))
\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)
\(=\frac{cos2x}{sin2x}=cot2x\)
a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).
b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).
a, \(\dfrac{1-sin2a}{1+sin2a}\)
\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)
\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)
\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)
b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)
\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)
\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)
\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)
\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)
\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
\(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1\)
\(\Rightarrow a+b=45^0\)