K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021
Câu này thì mik chịu nha
8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

NV
1 tháng 11 2021

\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)

\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)

\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)

Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)

\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)

\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)

\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)

\(\Leftrightarrow x_2-x_1=2\)

Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)

\(\Rightarrow c=2\)

Có 1 giá trị nguyên

13 tháng 5 2022

a) \(d\left(A;\Delta\right)=\dfrac{\left|4.1-3.3+2\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{3}{5}\)

b) \(\overrightarrow{AB}=\left(-3;-2\right)\) là VTCP của đường thẳng d

PT tham số của d: \(\left\{{}\begin{matrix}x=1-3t\\y=3-2t\end{matrix}\right.\left(t\in R\right)\)

c) Đường tròn (C) có bán kính \(R=AB=\sqrt{\left(1+2\right)^2+\left(3-1\right)^2}=\sqrt{13}\)

PT đường tròn (C): \(\left(x-1\right)^2+\left(y-3\right)^2=13\)

20 tháng 10 2021

B

20 tháng 10 2021

B

17 tháng 2 2023

a) AD đk cân bằng momen ta có

`F_1 *OA + P*GO = OB*F_2`

`<=> F_1 *(AB-OB) + mg(AB-OB - AB/2) = OB *F_2`

`<=> F_1 (120 - 30) + 2*10*(120 - 30 -120/2) = 30*50`

`=> F_1 = 10N`

b) AD đk cân bằng momen ta có

`F_1 * sin30^o *OA + P*GO = OB*F_2`

`<=> F_1 *sin30^o *(AB-OB) + mg(AB-OB - AB/2) = OB *F_2`

 `<=> F_1*sin30^o * (120 - 30) + 2*10*(120 - 30 -120/2) = 30*50`

`=> F_1 = 20(N)`

22 tháng 11 2023

\(x^2-4x+1=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot1=16-4=12>0\)

=>Phương trình có hai nghiệm phân biệt

\(x_1+x_2=-\left(-4\right)=4;x_1\cdot x_2=1\)

\(S=x_1^2\left(x_1-x_2\right)+x_2^2\left(x_2-x_1\right)\)

\(=x_1^2\left(x_1-x_2\right)-x_2^2\left(x_1-x_2\right)\)

\(=\left(x_1-x_2\right)\left(x_1^2-x_2^2\right)\)

\(=\left(x_1+x_2\right)\left(x_1-x_2\right)^2\)

\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\)

\(=4\cdot\left[4^2-4\cdot1\right]\)

\(=4\cdot\left(16-4\right)=4\cdot12=48\)

22 tháng 11 2023

loading...