K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(\left(tanx+cotx\right)^2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x+2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x=m^2-2\)

\(\Rightarrow\left(tan^2x+cot^2x\right)^2=\left(m^2-2\right)^2\)

\(\Leftrightarrow tan^4x+cot^4x+2=m^4-4m^2+4\)

\(\Leftrightarrow tan^4x+cot^4x=m^4-4m^2+2\)

\(\Rightarrow a+b+c+d+e=1+0-4+0+2=-1\)

NV
28 tháng 11 2019

\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)

\(\Rightarrow tan^2x+cot^2x=11\)

\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)

\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)

\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)

\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)

24 tháng 5 2023

Học bài trước rồi à :D

a: A=(sinx+cosx)^2-1=m^2-1

b: B=căn (sinx+cosx)^2-4sinxcosx=căn m^2-4(m^2-1)=căn -3m^2+4

c: C=(sin^2x+cos^2x)^2-2(sinx*cosx)^2=1-2m^2

 

14 tháng 9 2021

a) TH1: sinx = 1 

--> x = pi/2 + k2pi (k nguyên)

TH2: sinx = -3 (loại)

14 tháng 9 2021

b) 2cosx + cos2x = 0

<=> 2cosx + 2cos^2(x) - 1 = 0

TH1: cosx = (-1 + sqrt(3))/2

TH2: cosx = (-1 - sqrt(3))/2 (loại)

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

NV
23 tháng 7 2020

a/ ĐKXĐ:

\(sin\left(\frac{\pi}{2}.sinx\right)\ne0\Rightarrow\frac{\pi}{2}.sinx\ne k\pi\)

\(\Rightarrow sinx\ne2k\)

\(-1\le sinx\le1\Rightarrow sinx\ne0\Rightarrow x\ne k\pi\)

b/

\(sinx-1\ge0\Leftrightarrow sinx\ge1\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

c/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cos2x\ne0\end{matrix}\right.\) \(\Rightarrow sin4x\ne0\)

\(\Rightarrow x\ne\frac{k\pi}{4}\)

d/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sinx+cotx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin^2x+cosx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ne k\pi\\-cos^2x+cosx+1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\cosx\ne\frac{1-\sqrt{5}}{2}\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\pm arccos\left(\frac{1-\sqrt{5}}{2}\right)+k2\pi\end{matrix}\right.\)

e/

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\Rightarrow x\ne k\pi\)

NV
26 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
26 tháng 7 2020

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

a: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

b: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)

=>f(x) chẵn

c: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ