Tính giá trị của biểu thức \(\frac{3x-2y}{x-3y}\)biết \(\frac{10}{x}=\frac{3}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{10}{3}\Rightarrow x=\frac{10}{3}y\Rightarrow D=\frac{3x-2y}{x-3y}=\frac{3.\frac{10}{3}.y-2y}{\frac{10}{3}y-3y}=\frac{10y-2y}{\frac{1}{3}y}=\frac{8y}{\frac{1}{3}y}=24\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
\(C=\frac{x+5}{2x+\left(x-2y\right)}+\frac{y-5}{2y-\left(x-2y\right)}\)
\(=\frac{x+5}{2x+10}+\frac{y-5}{2y-10}=\frac{x+5}{2\left(x+5\right)}+\frac{y-5}{2\left(y-5\right)}=\frac{1}{2}+\frac{1}{2}=1\left(x\ne-5,y\ne5\right)\)
Trả lời :
Ta có :
C = \(\frac{x+5}{3x-2y}+\frac{y-5}{4y-x}\)
C = \(\frac{2\left(x+5\right)}{2\left(3x-2y\right)}+\frac{2\left(y-5\right)}{2\left(4y-x\right)}\)
C = \(\frac{2x+10}{6x-4y}+\frac{2y-10}{8y-2x}\)
Thay x - 2y = 10 . Ta được :
C = \(\frac{2x+x-2y}{6x-4y}+\frac{2y-x-2y}{8y-2x}\)
C = \(\frac{x\left(2+1\right)-2y}{6x-4y}+\frac{y\left(2+2\right)-x}{8y-2x}\)
C = \(\frac{3x-2y}{6x-4y}+\frac{4y-x}{8y-2x}\)
C = \(\frac{1}{2}+\frac{1}{2}\)
C = \(1\)
Vậy C = 1
Hok tốt
tự làm là hạnh phúc của mỗi công dân.