K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

A B C M K L

+) Xét \(\Delta ABC\)và \(\Delta BLC\)có chung đáy BC

\(LA=4LC\Rightarrow LC=\frac{1}{4}LA\Rightarrow LC=\frac{1}{5}AC\)

=> Đường cao hạ từ K xuống BC =\(\frac{1}{5}\)Đường cao hạ từ K xuống BC

Do đó: \(S_{\Delta BLC}=\frac{1}{5}.S_{\Delta ABC}=40:5=8\left(cm^2\right)\)

+) Xét \(\Delta ABM\)và \(\Delta BMC\)có chung đáy BM

có: \(AL=4LC\)

=> Đường cao hạ từ A xuống BL =4.Đường cao hạ từ C xuống BL

=> Đường cao hạ từ A xuống BM =4.Đường cao hạ từ C xuống BM

Do đó: \(S_{\Delta ABM}=4.S_{\Delta BMC}\)

+) Xét \(\Delta ACM\)và \(\Delta BMC\)có chung đáy CM

có: \(BK=\frac{1}{3}AK\Rightarrow AK=3.BK\)

=> Đường cao hạ từ A xuống CK =3.Đường cao hạ từ B xuống CK

=> Đường cao hạ từ A xuống CM =3.Đường cao hạ từ B xuống CM

Do đó: \(S_{\Delta ACM}=3.S_{\Delta BMC}\)

Ta lại có: \(S_{\Delta ACM}+S_{\Delta BMC}+S_{\Delta ABM}=S_{\Delta ABC}=40\left(cm^2\right)\)

=> \(3.S_{\Delta bCM}+S_{\Delta BMC}+4.S_{\Delta BCM}=S_{\Delta ABC}=40\left(cm^2\right)\)

=> \(8.S_{\Delta BMC}=40\left(cm^2\right)\)

=> \(S_{\Delta BMC}=40:8=5\left(cm^2\right)\)

=> \(S_{\Delta ABM}=4.S_{\Delta BMC}=4.5=20\left(cm^2\right)\)

=> \(S_{\Delta AML}=S_{\Delta ABC}-S_{\Delta ABM}-S_{\Delta BLC}=40-20-8=12\left(cm^2\right)\)

26 tháng 3 2016

ket qua : 10,5 

a) Xét ΔANM và ΔABC có

\(\widehat{ANM}=\widehat{ABC}\)(gt)

\(\widehat{MAN}\) chung

Do đó: ΔANM\(\sim\)ΔABC(g-g)

Suy ra: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AM\cdot AB=AN\cdot AC\)(đpcm)

11 tháng 2 2017
36cm2
11 tháng 2 2017

bạn viết đầy đủ cho mình nhé

a: BC=căn 3^2+4^2=5cm

AI là phân giác
=>IB/AB=IC/AC

=>IB/3=IC/4

mà IB+IC=5

nên IB/3=IC/4=5/(IB+IC)=5/7

=>IB=15/7cm; IC=20/7cm

b: AH=3*4/5=2,4cm

BH=AB^2/BC=3^2/5=1,8cm

Ta có: \(\dfrac{AB}{AN}=\dfrac{6}{3}=2\)

\(\dfrac{AC}{AM}=\dfrac{8}{4}=2\)

Do đó: \(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(=2)

Xét ΔABC và ΔANM có 

\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔABC\(\sim\)ΔANM(c-g-c)