HELP MÌNH VỚI!!!
Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Kẻ BE vuông góc với AD tại E, CF vuông góc với AD tại F. Chứng minh
a) Tam giác ABE đồng dạng với tam giác ACF
b) AEAF=BECF
c) AE.DF = AF.DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét \(\Delta ABC\)và \(\Delta BLC\)có chung đáy BC
\(LA=4LC\Rightarrow LC=\frac{1}{4}LA\Rightarrow LC=\frac{1}{5}AC\)
=> Đường cao hạ từ K xuống BC =\(\frac{1}{5}\)Đường cao hạ từ K xuống BC
Do đó: \(S_{\Delta BLC}=\frac{1}{5}.S_{\Delta ABC}=40:5=8\left(cm^2\right)\)
+) Xét \(\Delta ABM\)và \(\Delta BMC\)có chung đáy BM
có: \(AL=4LC\)
=> Đường cao hạ từ A xuống BL =4.Đường cao hạ từ C xuống BL
=> Đường cao hạ từ A xuống BM =4.Đường cao hạ từ C xuống BM
Do đó: \(S_{\Delta ABM}=4.S_{\Delta BMC}\)
+) Xét \(\Delta ACM\)và \(\Delta BMC\)có chung đáy CM
có: \(BK=\frac{1}{3}AK\Rightarrow AK=3.BK\)
=> Đường cao hạ từ A xuống CK =3.Đường cao hạ từ B xuống CK
=> Đường cao hạ từ A xuống CM =3.Đường cao hạ từ B xuống CM
Do đó: \(S_{\Delta ACM}=3.S_{\Delta BMC}\)
Ta lại có: \(S_{\Delta ACM}+S_{\Delta BMC}+S_{\Delta ABM}=S_{\Delta ABC}=40\left(cm^2\right)\)
=> \(3.S_{\Delta bCM}+S_{\Delta BMC}+4.S_{\Delta BCM}=S_{\Delta ABC}=40\left(cm^2\right)\)
=> \(8.S_{\Delta BMC}=40\left(cm^2\right)\)
=> \(S_{\Delta BMC}=40:8=5\left(cm^2\right)\)
=> \(S_{\Delta ABM}=4.S_{\Delta BMC}=4.5=20\left(cm^2\right)\)
=> \(S_{\Delta AML}=S_{\Delta ABC}-S_{\Delta ABM}-S_{\Delta BLC}=40-20-8=12\left(cm^2\right)\)
a) Xét ΔANM và ΔABC có
\(\widehat{ANM}=\widehat{ABC}\)(gt)
\(\widehat{MAN}\) chung
Do đó: ΔANM\(\sim\)ΔABC(g-g)
Suy ra: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AM\cdot AB=AN\cdot AC\)(đpcm)
a: BC=căn 3^2+4^2=5cm
AI là phân giác
=>IB/AB=IC/AC
=>IB/3=IC/4
mà IB+IC=5
nên IB/3=IC/4=5/(IB+IC)=5/7
=>IB=15/7cm; IC=20/7cm
b: AH=3*4/5=2,4cm
BH=AB^2/BC=3^2/5=1,8cm
Ta có: \(\dfrac{AB}{AN}=\dfrac{6}{3}=2\)
\(\dfrac{AC}{AM}=\dfrac{8}{4}=2\)
Do đó: \(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(=2)
Xét ΔABC và ΔANM có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)