K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

17 tháng 4 2016

a)xét 2 tam giác vuông ABD và HBD có:

BD(chung)

ABD=CBD(gt)

suy ra tam giác ABD=HBD(CH-GN)

suy ra AD=DH

b)

ta có: tam giác HCD vuông tại H sủy a DC là cạnh lớn nhất trong tam giác đó

suy ra DC>DH mà DH=Ad suy ra AD<DC

17 tháng 4 2016

c)

xét 2 tam giác vuông BHK và BAC có:

BA=BH(cmt)

BHK=BAC=90

B(chung)

suy ra : tam giác BHK=BAC(g.c.g)

suy ra BC=BK

suy ra tma giác BKC cân tại B

a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: AH=AK

DH=DK

=>AD là trung trực của HK

c: Gọi M là giao của DK với AH

Xét ΔAMC có

MK,CH là đường cao

MK cắt CH tại D

=>D là trực tâm

=>AD vuông góc MC

mà AD vuông góc CE

nên C,M,E thẳng hàng

=>AH,KD,CE đồng quy tại M

a: Xét ΔEAB có góc EAB=góc EBA

nên ΔEAB can tại E

mà EK là đường cao

nên K là trung điểm của AB

=>KA=KB

b: Xét ΔAEC vuông tại C và ΔBED vuông tại D có

EA=EB

góc AEC=góc BED

=>ΔAEC=ΔBED

=>EC=ED

=>AD=BC

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

b: XétΔBAC có BD là phân giác

nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)

D nằm giữa A và C

=>AD+DC=AC

=>AD+DC=5(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)

=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)

c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>DA=DH

mà DA=2,4(cm)

nên DH=2,4(cm)

 

6 tháng 2 2022

a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA

=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK

b)Xét tg ABC vuông tại C và tg BAD vuông tại D có

   AB chung

   ABC=BAD=30 độ

=> tg BAD=tg ABC(ch-gn)

=>AD=BC