Tính Nhanh:
P= 1/3 + 1/6 + 1/10 +....+ 1/45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+(1/6+1/12+1/20+...+1/90):2
A=1+(1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10):2
A=1+(1/2-1/10):2
A=1+2/5:2
A=1+1/5
A=6/5
Vậy A=6/5 nha bạn
Đúng 100%
k mk nha
Mk nhanh nhất
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}=\frac{4}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{4}{5}\)
a) 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/45
= 2 x (1/6 + 1/12+ 1/20 + ... + 1/90)
= 2 x (1/2x3 + 1/3x4 + 1/4x5 + ... + 1/9x10)
= 2 x (1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... +1/9 - 1/10)
= 2 x (1/2 - 1/10)
= 2 x 2/5
= 4/5
\(a,\frac{1}{2}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}\)
\(=\frac{4}{5}\)
\(P=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}P=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
\(\Rightarrow P=\frac{2}{5}\div\frac{1}{2}\)
\(=\frac{2}{5}.2=\frac{4}{5}\)
Vậy \(P=\frac{4}{5}\).
How to .... >: I know that !!!
\(P=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
\(\frac{1}{2}P=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\frac{1}{2}P=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2}P=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}P=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(P=\frac{4}{5}\)