Cho \(sina=\frac{2}{3}\), \(tan\left(\frac{5\pi}{2}-b\right)=\frac{3}{4}\) và a,b là các góc nhọn. Tính
a) \(A=sin\left(a+b\right)\)
b) \(B=cos\left(a-b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{1}{3}} = - \frac{{\sqrt 6 }}{3}\)
Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} = - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} = - \frac{{\sqrt 3 + 3\sqrt 2 }}{6}\)
b) Vì \(\pi < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)
Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2 - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)
pi/2<a,b<pi
=>cos a<0; cos b<0; sin a>0; sin b>0
\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)
\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)
sin(a-b)=sina*cosb-sinb*cosa
\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)
Ta có:
\({\cos ^2}a + {\sin ^2}a = 1 \Rightarrow \sin a = \pm \frac{4}{5}\)
Do \(0 < a < \frac{\pi }{2} \Leftrightarrow \sin a = \frac{4}{5}\)
\(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{4}{3}\)
Ta có;
\(\begin{array}{l}\sin \left( {a + \frac{\pi }{6}} \right) = \sin a.\cos \frac{\pi }{6} + \cos a.\sin \frac{\pi }{6} = \frac{4}{5}.\frac{{\sqrt 3 }}{2} + \frac{3}{5}.\frac{1}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\cos \left( {a - \frac{\pi }{3}} \right) = \cos a.\cos \frac{\pi }{3} + \sin a.\sin \frac{\pi }{3} = \frac{3}{5}.\frac{1}{2} + \frac{4}{5}.\frac{{\sqrt 3 }}{2} = \frac{{3 + 4\sqrt 3 }}{{10}}\\\tan \left( {a + \frac{\pi }{4}} \right) = \frac{{\tan a + \tan \frac{\pi }{4}}}{{1 - \tan a.tan\frac{\pi }{4}}} = \frac{{\frac{4}{3} + 1}}{{1 - \frac{4}{3}}} = - 7\end{array}\)
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
a) \(\cos \left( {a + b} \right) = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right] = \sin \left( {\frac{\pi }{2} - a} \right).\cos b - \cos \left( {\frac{\pi }{2} - a} \right).\sin b = \cos a.\cos b - \sin a.\sin b\)
b) \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right] = \cos a.\cos \left( { - b} \right) - \sin a.\sin \left( { - b} \right) = \sin a.\sin b + \cos a.\cos b\)
\(\begin{array}{l}A = \sin \left( {a - 17^\circ } \right)\cos \left( {a + 13^\circ } \right) - \sin \left( {a + 13^\circ } \right)\cos \left( {a - 17^\circ } \right)\\A = \sin \left( {a - 17^\circ - a - 13^\circ } \right) = \sin \left( { - 30^\circ } \right) = - \frac{1}{2}\end{array}\)
\(\begin{array}{l}B = \cos \left( {b + \frac{\pi }{3}} \right)\cos \left( {\frac{\pi }{6} - b} \right) - \sin \left( {b + \frac{\pi }{3}} \right)\sin \left( {\frac{\pi }{6} - b} \right)\\B = \cos \left( {b + \frac{\pi }{3} + \frac{\pi }{6} - b} \right) = \cos \frac{\pi }{2} = 0\end{array}\)
\(cosa=\sqrt{1-sin^2a}=\frac{\sqrt{5}}{3}\)
\(tan\left(\frac{5\pi}{2}-b\right)=tan\left(2\pi+\frac{\pi}{2}-b\right)=tan\left(\frac{\pi}{2}-b\right)=cotb\)
\(\Rightarrow cotb=\frac{3}{4}\Rightarrow sinb=\frac{1}{\sqrt{1+cot^2b}}=\frac{4}{5}\)
\(\Rightarrow cosb=\sqrt{1-sin^2b}=\frac{3}{5}\)
\(A=sina.cosb+cosa.sinb=...\)
\(B=cosa.cosb+sina.sinb=...\)