K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Ta có $n^4+2n^3+5n^2=n^2(n^2+2n+5)$.

Để biểu thức trên là bình phương của một số nguyên thì $n^2+2n+5$ phải là bình phương của một số nguyên.

Đặt $n^2+2n+5=a^2$ với $a\in\mathbb{Z}$

$\Leftrightarrow (n+1)^2+4=a^2$

$\Leftrightarrow 4=a^2-(n+1)^2=(a-n-1)(a+n+1)$

Vì $a-n-1-(a+n+1)=-2(n+1)$ chẵn nên $a-n-1,a+n+1$ có cùng tính chẵn lẻ.

Do đó $(a-n-1,a+n+1)=(2,2); (-2,-2)$

Nếu $(a-n-1,a+n+1)=(2,2)\Rightarrow 2(n+1)=0\Rightarrow n=-1$

Nếu $(a-n-1,a+n+1)=(-2,-2)\Rightarrow 2(n+1)=0\Rightarrow n=-1$

Tóm lại $n=-1$

24 tháng 6 2020

okey :v

\(n^4+2n^3+5n^2\text{ là bình phương của 1 số}\Leftrightarrow n^2\left(n^2+2n+5\right)\text{ là bình phương của 1 số}\)

mà n nguyên do đó:

\(n^2+2n+5\text{ là bình phương của 1 số nguyên}\Rightarrow\left(n+1\right)^2+4=k^2\left(k\text{ nguyên}\right)\)

đến đây ez

19 tháng 11 2019

a) Học sinh tự làm

b) 2 n + 1 n + 1 ( n ≠ − 1 ) có giá trị là số nguyên khi (2n +1) ⋮  (n +1) hay [2(n +1) -1] ⋮  (n +1)

Từ đó suy ra 1 ⋮  (n +1)

Do đó n {- 2;0).

16 tháng 4 2017

THÊM LÀ BÌNH PHƯƠNG CỦA 1 SỐ

6 tháng 11 2015

tick cho minh di roi minh lam cho

6 tháng 11 2015

Không có n nguyên dương thỏa mãn       

23 tháng 10 2019

Với n thuộc Z

Có: \(A=2n^2+5n-3=2n^2+6n-n-3=2n\left(n+3\right)-\left(n+3\right)=\left(2n-1\right)\left(n+3\right)\)

=> \(\left|A\right|=\left|\left(n+3\right)\left(2n-1\right)\right|\)

Để | A | là số nguyên tố \(n+3=\pm1\)hoặc \(2n-1=\pm1\)

+) Với n + 3 = 1 => n =-2  => | A | = 5 là số nguyên tố => n = - 2 thỏa mãn.

+) Với n + 3 = - 1 => n = - 4 => | A | = 9 không là số nguyên tố => loại

+) Với 2n -1 = 1 => n =1 => |A | = 4 loại

+) Với 2n -1 =-1 => n = 0 => | A | = 3 là số nguyên tố => n = 0 thỏa mãn.

Vậy n=-2 hoặc n =0.