K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Thay x=1:

\(2f\left(1\right)-0.f\left(2\right)=6\)

\(f\left(1\right)=3\)

Lại thay x=0:

\(2.f\left(0\right)-\left(-1\right)f\left(1\right)=4\)

\(2f\left(0\right)-\left(-3\right)=4\)

\(2f\left(0\right)=4+\left(-3\right)=1\)

\(\Rightarrow f\left(0\right)=\frac{1}{2}\)

Đáp số:\(\frac{1}{2}\)

24 tháng 5 2020

cảm ơn bn

15 tháng 4 2022

undefined

15 tháng 4 2022

mình cảm ơn ạ♥♥♥

16 tháng 5 2017

thế @Trần Khánh Linh ai cần bạn xin lỗi đâu                                                                                                                                       mà bạn Thái viết nam hỏi học sinh lớp 7 chứ phải lớp 5 đâu mà bạn xía vào làm gì

14 tháng 5 2017

xin lỗi mk mới học lp 5 thôi

NV
7 tháng 11 2021

Vẫn là đạo hàm của tích

Dễ dàng viết được:

\(\left[f'\left(x\right)\right]^2+f\left(x\right).f''\left(x\right)=\left[f\left(x\right)\right]'.f'\left(x\right)+f\left(x\right).\left[f'\left(x\right)\right]'=\left[f'\left(x\right).f\left(x\right)\right]'\)

Do đó giả thiết biến đổi thành:

\(\left[f'\left(x\right).f\left(x\right)\right]'=15x^4+12x\)

Nguyên hàm 2 vế:

\(f'\left(x\right).f\left(x\right)=\int\left(15x^4+12x\right)dx=3x^5+6x^2+C\)

Thay \(x=0\)

\(\Rightarrow f'\left(0\right).f\left(0\right)=C\Rightarrow C=1\)

\(\Rightarrow f'\left(x\right).f\left(x\right)=3x^5+6x^2+1\)

Tiếp tục nguyên hàm 2 vế:

\(\int f\left(x\right).f'\left(x\right)dx=\int\left(3x^5+6x^2+1\right)dx\) với chú ý \(\int f\left(x\right).f'\left(x\right)dx=\int f\left(x\right).d\left[f\left(x\right)\right]=\dfrac{1}{2}f^2\left(x\right)+C\)

Nên:

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+C\)

Thay \(x=0\Rightarrow C=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{2}f^2\left(x\right)=\dfrac{1}{2}x^6+2x^3+x+\dfrac{1}{2}\)

\(\Rightarrow f^2\left(1\right)\)

16 tháng 9 2017

@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))

NV
21 tháng 4 2022

\(f^3\left(2-x\right)-2f^2\left(2+3x\right)+x^2g\left(x\right)+36x=0\) (1)

Thay \(x=0\Rightarrow f^3\left(2\right)-2f^2\left(2\right)=0\Rightarrow\left[{}\begin{matrix}f\left(2\right)=0\\f\left(2\right)=2\end{matrix}\right.\)

Đạo hàm 2 vế của (1):

\(\Rightarrow-3f^2\left(2-x\right).f'\left(2-x\right)-12f\left(2+3x\right).f'\left(2+3x\right)+2x.g\left(x\right)+x^2.g'\left(x\right)+36=0\)

Thay \(x=0\)

\(\Rightarrow-3f^2\left(2\right).f'\left(2\right)-12f\left(2\right).f'\left(2\right)+36=0\)

TH1: \(f\left(2\right)=0\Rightarrow36=0\) (ktm)

TH2: \(f\left(2\right)=2\)

\(\Rightarrow-3.2^2.f'\left(2\right)-12.2.f'\left(2\right)+36=0\Rightarrow f'\left(2\right)=1\)

\(\Rightarrow A=3.2+4.1=10\)

18 tháng 5 2021

undefined