2x=7y và x.y=224
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2x = 7y \(\Rightarrow\) \(\frac{x}{7}\) =\(\frac{y}{2}\)
Đặt \(\frac{x}{7}\)=\(\frac{y}{2}\) =k \(\Rightarrow\) \(\hept{\begin{cases}x=7k\\y=2k\end{cases}}\)
mà x . y=42
\(\Leftrightarrow\)7k .2k =42
\(\Leftrightarrow\)14k2 =42
\(\Leftrightarrow\)k= \(\sqrt{3}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=7\sqrt{3}\\y=2\sqrt{3}\end{cases}}\)
Vì \(\left(2x+1\right)\left(y-3\right)=12\)
\(\Rightarrow2x+1;y-3\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Vì \(2x+1\) là số lẻ nên \(2x+1\in\left\{-3;-1;1;3\right\}\)
Ta có bảng sau:
2x+1 | -3 | -1 | 1 | 3 |
2x | -4 | -2 | 0 | 2 |
x | -2 | -1 | 0 | 1 |
y-3 | -4 | -12 | 12 | 4 |
y | -1 | -9 | 15 | 7 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-1\right);\left(-1;-9\right);\left(0;15\right);\left(1;7\right)\right\}\)
Ta có:
\(xy+3x-7y=21\)
\(\Rightarrow x.\left(y+3\right)-7y-21=21-21=0\)
\(x\left(y+3\right)-\left(21+7y\right)=0\)
\(x.\left(y+3\right)-7.\left(y+3\right)=0\)
\(\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow x-7=0\) hoặc \(y+3=0\)
TH1: x-7=0
x=0+7=7
TH2:y+3=0
y=0-3=-3
Vậy x=7; y=-3
đề là 256 nhé
7x = 7y
=> x = y
Mà xy = 252
=> x = y = \(\sqrt{256}\)= 16
4x=7y nên x/7=y/4
Đặt x/7=y/4=k
=>x=7k; y=4k
xy=112
=>28k^2=112
=>k^2=4
TH1: k=2
=>x=14; y=8
TH2: k=-2
=>x=-14; y=-8
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
a, xy=-28
=>x,y E {1;-1;2;-2;4;-4;7;-7;14;-14;28;-28}
b, (2x-1)(4y-2)=-42
=>2x-1 và 4y-2 E Ư(-42)={1;-1;2;-2;3;-3;6;-6;7;-7;14;-14;21;-21;42;-42}
Mà 2y-1 là số lẻ => 2y-1 E {1;-1;3;-3;7;-7;21;-21}
=>4y-2 E {2;-2;6;-6;14;-14;42;-42}
Ta có bảng:
2x-1 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
4y-2 | -42 | 42 | -14 | 14 | -6 | 6 | -2 | 2 |
x | 1 | 0 | 2 | -1 | 4 | -3 | 11 | -10 |
y | -10 | 11 | -3 | 4 | -1 | 2 | 0 | 1 |
c, giống b nhưng ko cần lập luận lẻ hay chẵn
d, xy+3x-7y=21
=>x(y+3)-7y-21=21-21
=>x(y+3)-7(y+3)=0
=>(x-7)(y+3)=0
=> \(\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}}\)
a) (2x+1)(2y-3)=36
=> 2x+1 ; 2y-3 thuộc Ư(36)={-1,-2,-3,-4,-6,-9,-13,-18,-36,1,2,3,4,6,9,13,18,36}
Ta có bảng :
2x+1 | -1 | -2 | -3 | -4 | -6 | -9 | -13 | -18 | -36 | 1 | 2 | 3 | 4 | 6 | 9 | 13 | 18 | 36 |
2y-3 | -36 | -18 | -13 | -9 | -6 | -4 | -3 | -2 | -1 | 36 | 18 | 13 | 9 | 6 | 4 | 3 | 2 | 1 |
x | -1 | -3/2 | -2 | -5/2 | -7/2 | -5 | -7 | -19/2 | -37/2 | 0 | 1/2 | 1 | 3/2 | 5/2 | 4 | 6 | 17/2 | 35/2 |
y | -33/2 | -15/3 | -5 | -3 | -3/2 | -1/2 | 0 | 1/2 | 1 | 39/2 | 21/2 | 8 | 6 | 9/2 | 7/2 | 3 | 5/2 | 2 |
Vậy ta có các cặp x,y thõa mãn đề bài là : (-2,-5);(-7,0);(1,8);(6,3)