K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(7n+1;6n+1)

=>42n+6-42n-7 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

2 tháng 8 2017

Gọi d là ƯCLN của 7n và 7n + 1

=> 7n chia hết cho d và 7n + 1 chia hết cho d

=> (7n + 1) - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n 

2 tháng 8 2017

Gọi ước chung lớn nhất cảu 7n và 7n+1 là d 

Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d 

=> 7n+1 - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> uwocschung lớ nhất của 7 n và 7n+1 là 1

=> \(\frac{7n}{7n+1}\)tối giản

=> đpcm

5 tháng 3 2017

Gọi UCLN(4n+1,6n+1) là d

Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d

          6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d

=> 12n + 3  - (12n + 2) chia hết cho d

=> 1 chia hết cho d => d = 1

=> UCLN(4n+1,6n+1) = 1

Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản

17 tháng 3 2018

dựa vào tìm ước chung lớn nhất

dễ mà

cậu lm đc

17 tháng 3 2018

gọi d là ƯC(7n+4; 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow35n+21-35n-20⋮d\)

\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n 

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Gọi d là ƯCLN(7n+4,5n+3)

\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d

\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d

\(\Rightarrow\)35n+20-35n-21 \(⋮\) d

\(\Rightarrow\)-1 chia hết cho d hay d = -1

\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1

24 tháng 2 2022

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)