Cho a,b,c > 0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)Chứng minh abc\(\le\)8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo
Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath
Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!
Ok, giờ chú ý:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.
Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)
\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó:
\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)
\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)
\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)
\(\Rightarrow VT\le\frac{3}{2}\)
Đẳng thức xảy ra khi x = y = z hay a = b = c = 1
Áp dụng BĐT Cô-si ta có:
\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)
\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)
chứng minh tương tự
\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)
=>đpcm
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).
Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\), \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).
Nhân 3 bất đẳng thức trên theo vế ta được:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\).