Cho ΔABC có AB < BC < CA, thế thì:
A. Â> B̂
B. B̂< 60o
C. B̂= 60o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC có Â = 120o, cạnh b = 8cm và c = 5cm. Tính cạnh a, các góc B̂, Ĉ của tam giác đó.
+ a2 = b2 + c2 - 2.bc.cosA = 82 + 52 – 2.5.8.cos120º = 129
⇒ a = √129 cm
Theo định lý tổng ba góc trong tam giác ABC, ta có:
Cạnh đối diện góc B là AC
Cạnh đối diện góc C là AB
Cạnh đối diện góc A là BC
Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
Vì 450 < 550 < 800 hay B̂ < Ĉ < Â ⇒ AC < AB < BC.
Xét ΔABC có góc B=góc C
nên ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a) Ta có:
AB = AD (gt) ⇒ A thuộc đường trung trực của BD
CB = CD (gt) ⇒ C thuộc đường trung trực của BD
Vậy AC là đường trung trực của BD
b) Xét ΔABC và ΔADC có:
AB = AD (gt)
BC = DC (gt)
AC cạnh chung
⇒ ΔABC = ΔADC (c.c.c)
b: \(\widehat{B}=45^0\)
AC=50cm
\(BC=50\sqrt{2}\left(cm\right)\)
a) Xét tứ giác ABCD có AD//BC(cùng vuông góc với BC)
nên ABCD là hình thang có hai đáy là AD và BC(Định nghĩa hình thang)
Hình thang ABCD(AD//BC) có \(\widehat{DAB}=\widehat{ABC}=90^0\)(gt)
nên ABCD là hình thang vuông(Dấu hiệu nhận biết hình thang vuông)