K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2020

\(\left(5x+1\right)\left(x^2+1\right)=0\)

=> \(\orbr{\begin{cases}5x+1=0\\x^2+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}5x=-1\\x^2=-1\end{cases}}\)

Mà \(x^2\ge0\forall x\)=> x2 = -1 là vô lí

=> Chỉ có \(5x=-1\)

=> \(x=\frac{-1}{5}=-0,2\)

Mới lớp 7 nên làm sợ sai ._.

14 tháng 5 2020

\(\left(5x+1\right)\left(x^2+1\right)=0\)

Ta có \(x^2+1>0\forall x\)

\(\Rightarrow5x+1=0\)

\(\Leftrightarrow5x=-1\)

\(\Leftrightarrow x=\frac{-1}{5}\)

Vậy \(x=\frac{-1}{5}\)

28 tháng 6 2018

a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(5x-1-5x\right)=0\Leftrightarrow1-5x=0\Leftrightarrow x=\dfrac{1}{5}\)

Vaayj........

b/ \(x\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

Vay......

c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=3\end{matrix}\right.\)

Vậy.....

28 tháng 6 2018

\(a)\) \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

\(\Leftrightarrow\)\(\left(5x-1\right)\left(5x-1-5x\right)=0\)

\(\Leftrightarrow\)\(\left(5x-1\right).\left(-1\right)=0\)

\(\Leftrightarrow\)\(5x-1=0\)

\(\Leftrightarrow\)\(5x=1\)

\(\Leftrightarrow\)\(x=\frac{1}{5}\)

Vậy \(x=\frac{1}{5}\)

\(b)\) \(x\left(x+1\right)\left(x+2\right)=0\)

Suy ra \(x=0\) hoặc \(x+1=0\) hoặc \(x+2=0\)

\(\Leftrightarrow\)\(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)

Vậy \(x=0\) hoặc \(x=-1\) hoặc \(x=-2\)

\(c)\) \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=0-2\\x=0+3\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-2\\x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=3\end{cases}}}\)

Vậy \(x=\frac{-2}{3}\) hoặc \(x=3\)

Chúc bạn học tốt ~ 

28 tháng 6 2018

a/ \(\left(5x-1\right)^2-5x\left(5x-1\right)=0\)

<=> \(\left(5x-1\right)\left(5x-1-5x\right)=0\)

<=> \(-1\left(5x-1\right)=0\)

<=> \(5x-1=0\)

<=> \(5x=1\)

<=> \(x=\frac{1}{5}\)

b/ \(x\left(x+1\right)\left(x+2\right)=0\)

<=> \(x=0\) hoặc \(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\)

<=> \(x=0\)hoặc \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

c/ \(\left(3x+2\right)x-3\left(3x+2\right)=0\)

<=> \(\left(3x+2\right)\left(x-3\right)=0\)

<=> \(\orbr{\begin{cases}3x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=-2\\x=3\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=3\end{cases}}\)

27 tháng 8 2021

a) 4x(x+1)=8(x+1)

<=>4x(x+1)-8(x+1)=0

<=>(4x-8)(x+1)=0

<=>\(\left[\begin{array}{} 4x-8=0\\ x+1=0 \end{array} \right.\)

<=>\(\left[\begin{array}{} x=2\\ x=-1 \end{array} \right.\)

Vậy...

b)x(x-1)-2(1-x)=0

<=>(x+2)(x-1)=0

<=>\(\left[\begin{array}{} x+2=0\\ x-1=0 \end{array} \right.\)

<=>\(\left[\begin{array}{} x=-2\\ x=1 \end{array} \right.\)

Vậy...

c)5x(x-2)-(2-x)=0

<=>(5x+1)(x-2)=0

<=>\(\left[\begin{array}{} 5x+1=0\\ x-2 \end{array} \right.\)

<=>\(\left[\begin{array}{} x=-1/5\\ x=2 \end{array} \right.\)

d)5x(x-200)-x+200=0

<=>(5x-1)(x-200)=0

<=>\(\left[\begin{array}{} 5x-1=0\\ x-200=0 \end{array} \right.\)

<=>\(\left[\begin{array}{} x=1/5\\ x=200 \end{array} \right.\)

e)\(x^3+4x=0 \)

\(\Leftrightarrow x(x^2+4)=0 \)

\(\Leftrightarrow \left[\begin{array}{} x=0\\ x^2+4=0 (loại vì x^2+4>=0 với mọi x) \end{array} \right.\)

Vậy x=0

f)\((x+1)=(x+1)^2\)

\(\Leftrightarrow (x+1)-(x+1)^2=0\)

\(\Leftrightarrow (x+1)(1-x-1)=0\)

\(\Leftrightarrow (x+1)(-x)=0\)

\(\Leftrightarrow \left[\begin{array}{} x=-1\\ x=0 \end{array} \right.\)

Vậy....

4 tháng 7 2019

a, \(4x\left(x+1\right)-5\left(x+1\right)=0\)

\(\left(x+1\right)\left(4x-5\right)\)=0

\(\left\{{}\begin{matrix}x+1=0\\4x-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right)\\4x=5\Rightarrow x=\frac{5}{4}\end{matrix}\right.\)

b, \(5x\left(x-20\right)+5x-100=0\)

\(5x\left(x-20\right)+\left(5x-100\right)=0\)

\(5x\left(x-20\right)+5\left(x-20\right)=0\)

\(\left(x-20\right)\left(5x+5\right)\)= 0

\(\left\{{}\begin{matrix}x-20=0\\5x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\\5x=-5\Rightarrow x=-1\end{matrix}\right.\)

c, \(2\left(x-2\right)+\left(x-2\right)^2=0\)

  1. tập xác định của chương trình
  2. Rút gọn thừa số chung

  3. Giải phương trình

  4. Giải phương trình

  5. Biệt thức

  6. Biệt thức

  7. Nghiệm

  8. Lời giải thu được

Vậy x= 0 và x = 2

d, \(\left(x-3\right)^2-5x-x^2=12\)

\(\left(x^2-2.x.3+3^2\right)-5x-x^2=12\)

\(x^2-6x+9-5x-x^2=12\)

\(-11x+9=12\)

\(-11x=3\)

=> \(x=-\frac{3}{11}\)

12 tháng 12 2019

a)2x.(3x+5)-x.(6x-1)=33

=>\(6x^2+10x-6x^2+x=33\)

=>11x=33

=>x=3

12 tháng 12 2019

b)x(3x-1)+12x-4=0

=>x(3x-1)+4(3x-1)=0

=>(x-4)(3x-1)=0

=>x-4=0 hoặc 3x-1=0

+)x-4=0 +)3x-1=0

=>x=4 =>x=\(\frac{1}{3}\)

a) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)

b) Ta có: \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: S={2;3}

c) Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy: S={1;2}

d) Ta có: \(2x^2-6x+1=0\)

\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)

mà \(2\ne0\)

nên \(x^2-3x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)

\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)

e) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-10x-2x+5=0\)

\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)

25 tháng 1 2021

cho vào máy tính là ra hết

18 tháng 8 2021

a, \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)

b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)

c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)

1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)

\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

3: Ta có: \(5x^3-20x=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)