K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Hình:

A E C B H D K

Giải:

a) Xét tam giác ABD và tam giác ACE, có:

\(\widehat{A}\) chung

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)

b) Vì \(\Delta ABD=\Delta ACE\) (câu a)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) (Hai góc tương ứng)

Có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)

Lấy vế trừ vế, ta được:

\(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)

\(\Leftrightarrow\widehat{HBC}=\widehat{HCB}\)

\(\Leftrightarrow\Delta BHC\) cân tại H

c) Xét tam giác ABC, có:

BD là đường cao thứ nhất của tam giác ABC

CE là đường cao thứ hai của tam giác ABC

Mà BD và CE cắt nhau ở H

Suy ra H là trực tâm của tam giác ABC

\(\Rightarrow\) AH là đường cao thứ ba của tam giác ABC

Mà tam giác ABC cân tại A

=> AH đồng thời là đường trung trực của tam giác ABC

=> AH là đường trung trực của BC

d) Xét tam giác BKC, có:

CD là đường cao đồng thời là đường trung tuyến của tam giác BKC

=> Tam giác BKC cân tại C

\(\Leftrightarrow\widehat{CBK}=\widehat{BKC}\)

Hay \(\widehat{CBH}=\widehat{DKC}\) (1)

Lại có: \(\widehat{CBH}=\widehat{HCB}\) (Tam giác HBC cân tại H)

Hay \(\widehat{CBH}=\widehat{ECB}\) (2)

Từ (1) và (2) => \(\widehat{ECB}=\widehat{DKC}\)

Vậy ...

13 tháng 5 2018

a) xét \(\Delta EBC\)\(\Delta\)DCB

\(\widehat{BEC}\) =\(\widehat{CDB}\) =90o

BC chung

\(\widehat{EBC}\) = \(\widehat{DCB}\) ( \(\Delta\) ABC cân tại A)

=>\(\Delta\) vuông EBC = \(\Delta\)vuông DCB ( cạnh huyền -góc nhọn )

=> BD=CE ( 2 cạnh tương ứng)

b) \(\Delta EBC=\Delta DCB\left(cmt\right)\)

=> \(\widehat{ECB}=\widehat{DBC}\) ( 2 góc tương ứng )

\(\Delta HBC\)\(\widehat{HBC}=\widehat{HCB}\) ( cmt)

=> \(\Delta HBC\) cân tại H

c) H là giao điểm của 2 đường cao BD và CE

=> H là trực tâm của \(\Delta ABC\)

=> AH là đường cao của BC

\(\Delta ABC\) cân tại A

=> AH là trung trực của BC ( Tính chất tam giác cân )

d) D là trung điểm của BK

=> BD=KD mà BD=CE (cmt)

=> CE=KD

XÉT \(\Delta KDC\)\(\Delta CEB\)

KD=CE( cmt)

\(\widehat{CEB}\) =\(\widehat{KDC}\) \(=90^o\)

BE=CD( \(\Delta EBC=\Delta DCB\) )

=>\(\Delta KDC=\Delta CEB\left(c.g.c\right)\)

=>\(\widehat{ECB}=\widehat{DKC}\) ( 2 góc tương ứng )

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

24 tháng 3 2020

d) Xét 2 \(\Delta\) vuông \(BCD\)\(KCD\) có:

\(\widehat{BDC}=\widehat{KDC}=90^0\left(gt\right)\)

\(BD=KD\) (vì D là trung điểm của \(BK\))

Cạnh CD chung

=> \(\Delta BCD=\Delta KCD\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(\widehat{DBC}=\widehat{DKC}\) (2 góc tương ứng).

\(\widehat{ECB}=\widehat{DBC}\left(cmt\right)\)

=> \(\widehat{ECB}=\widehat{DKC}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 3 2020

!

23 tháng 12 2016

a)

Xét tam giác AHB và tam giác DBH có:

AH = DB (gt)

AHB = DBH (= 900)

BH chung

=> Tam giác AHB = Tam giác DBH (c.g.c)

b)

DB _I_ BC (gt)

AH _I_ BC (gt)

=> DB // AH

c)

Tam giác HAB vuông tại H có:

HAB + HBA = 900

350 + HBA = 900

HBA = 900 - 350

HBA = 550

Tam giác ABC vuông tại A có:

ABC + ACB = 900

550 + ACB = 900

ACB = 900 - 550

ACB = 350

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)