Cho tam giác ABC cân tại A kẻ BH vuông góc với AB tại C . Gọi I là giao điểm của Bx và Cy. Chứng minh tam giác ABI = tam giác ACI
RẤT MONG MỌI NGƯỜI GIÚP ĐỠ CÁM ƠN !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.
Sửa đề: I là giao của BH và CK
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KB=HC
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
=>ΔAHI=ΔAKI
a) Xét tam giác ABM và ACM, ta có:
AB=AC (gt)
AM:chung
Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)
b)gọi giao điểm của AM,BC là D
Xét tam giác ADB và ADC, ta có
AB=AC(gt)
GÓC BAD=CAD(tam giác ABM=ACM)
AD: chung
Vậy tam giác ADB=ADC(c.g.c)
Góc ADB=ADC(2 góc tương ứng)
mà ADB+ADC=180( kề bù)
Vậy góc ADB=ADC=90
AM vuông góc với BC
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
BA = Ac ( vì Tam giác ABC cân tại A)
=> tam giác ABI = tam giác ACI ( ch - cgv)
hok tốt!!