K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2020

\(A=sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

\(-1\le sin\left(x+\frac{\pi}{4}\right)\le1\Rightarrow-\sqrt{2}\le sinx+cosx\le\sqrt{2}\)

\(A_{max}=\sqrt{2}\) khi \(sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{4}+k2\pi\)

\(A_{min}=-\sqrt{2}\) khi \(x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\Rightarrow x=-\frac{3\pi}{4}+k2\pi\)

2 câu sau y hệt câu đầu:

\(B=sinx-cosx=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)

\(C=sin4x+cos4x=\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le C\le\sqrt{2}\)

14 tháng 12 2021

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

21 tháng 12 2021

c: \(=x^2+3x-40-x^2-3x+4=-36\)

21 tháng 12 2021

câu d nữa bạn

 

27 tháng 10 2021

a: \(5x^4-x^3+7x\)

\(=x\left(5x^3-x^2+7\right)\)

c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

27 tháng 10 2021

a) \(=x\left(5x^3-x^2+7\right)\)

b) \(=\left(5x+4y\right)\left(x-y\right)\)

c) \(\left(x^2-2x\right)-\left(3x-6\right)=\left(x-2\right)\left(x-3\right)\)

25 tháng 11 2021

\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)

25 tháng 11 2021

mình thấy chưa triệt để

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Bài 7:

a.

$A=(x-1)(x-3)+11=x^2-4x+3+11=x^2-4x+14$

$=(x^2-4x+4)+10=(x-2)^2+10\geq 10$
Vậy gtnn của $A$ là $10$ khi $x=2$

b.

$B=5-4x^2+4x=6-(4x^2-4x+1)=6-(2x-1)^2\leq 6$

Vậy gtln của $B$ là $6$ khi $2x-1=0\Leftrightarrow x=\frac{1}{2}$

c.

$x-y=2\Rightarrow x=y+2$. Khi đó:

$B=y^2-3x^2=y^2-3(y+2)^2=y^2-(3y^2+12y+12)=-2y^2-12y-12$

$=6-2(y^2+6y+9)=6-2(y+3)^2\leq 6$

Vậy $B_{\max}=6$

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Bài 8:

Đặt $f(x)=x^3-3x^2+5x+a$

Theo định lý Bê-du, để $f(x)\vdots x-2$ thì $f(2)=0$

$\Leftrightarrow 6+a=0$

$\Leftrightarrow a=-6$

a) 2+3𝑥=−15−19

3x= -15 - 19 -2

3x = -36

x= -12

b) 2𝑥−5=−17+12

2x = -17 + 12 + 5

2x = 0

x = 0

c) 10−𝑥−5=−5−7−11

-x = -5 - 7 - 11 - 10 + 5

-x = -28

x = 28

d) |𝑥|−3=0

|x|= 3

x = \(\pm\)3

e) (7−|𝑥|).(2𝑥−4)=0

th1 : ( 7 - | x| ) = 0

|x|= 7

x=\(\pm\)7

th2: ( 2x-4) = 0

2x = 4

x= 2

f) −10−(𝑥−5)+(3−𝑥)=−8

-10 - x + 5 + 3 - x = -8

-10 + 5 + 3 + 8 = 2x

2x= 6

x = 3

g) 10+3(𝑥−1)=10+6𝑥

10 + 3x - 3 = 10 + 6x

3x - 6x = 10 - 10 + 3

-3x = 3

x= -1

h) (𝑥+1)(𝑥−2)=0

th1: x+1= 0

x = -1

x-2=0

x=2

hok tốt!!!

24 tháng 11 2021

tl mình nha

24 tháng 11 2021

a) \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x\left(x-3\right)-\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10\)

\(=\left(x-4\right)^2+10\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ 10

Min A=10 ⇔ x=4

b) tương tự

30 tháng 9 2021

Giải gấp nhé mấy bạn