K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

\(A=\frac{n+9}{n-2}=1+\frac{11}{n-2}\)

Ta có \(1+\frac{11}{n-2}\ge1\forall n\ge2\)

Dấu = xảy ra \(\Leftrightarrow n-2=0\Rightarrow n=2\)

Vậy \(A_{min}=1\Leftrightarrow n=2\)

6 tháng 5 2020

Bg

Để phân số A = \(\frac{n+9}{n-2}\)nhỏ nhất (với n \(\inℤ\)) thì n + 9 (tử số) phải nhỏ nhất và n - 2 (mẫu số) lớn nhất. (Điều kiện phụ: A là phân số âm thì mới nhỏ nhất được)

Xét tử số n + 9 phải nhỏ nhất:

Để n + 9 nhỏ nhất thì n + 9 phải là số âm và A cũng âm.

=> n < -10 thì n + 9 âm

Nhưng nếu n < -10 thì n - 2 cũng âm -> Phân số A là phân số dương (Điều kiện phụ tỏa sáng mặc dù không phải nhân vật chính:))

=> Để A là phân số âm thì tử số phải là số dương lớn nhất và mẫu số phải là số âm lớn nhất.

=> n - 2 = -1  (-1 là số âm lớn nhất)

     n      = -1 + 2

     n      = 1

Lúc đó thì tử số n + 9 = 1 + 9 = 10 (thỏa mãn)

Vậy n = 1 thì A nhỏ nhất (A sẽ là \(\frac{10}{-1}=-10\)(nhỏ nhất)

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

24 tháng 3 2018

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

đến đây bn liệt kê ước của 3 r` lm tiếp!

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2 = 1

=> n = 3

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

ko hieu cau 3 lam

20 tháng 3 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=2-\frac{5}{2n+3}\) A nguyên nên 2n+3\(\in\)U(5)={5,-5,1,-1} nên n\(\in\){2, -4, -1, -2}

A=\(2-\frac{5}{2n+3}\) nên có giá trị lớn nhất khi 2n+3=-1 <=>A=7, nhỏ nhất khi 2n+3=1 <=>A=-3

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~