K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

\(x^2-2=0\)

=> \(x^2=2\)

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

\(\left(4x-3\right)\left(5+x\right)=0\)

=> \(\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)

5 tháng 5 2020

Lưu ý là \(-\sqrt{2}\)phải để trong ngoặc nhé 

3 tháng 8 2023

\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

3 tháng 8 2023

\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
PT $\Leftrightarrow (x^3-2x^2)+(x^2-4)=0$

$\Leftrightarrow x^2(x-2)+(x-2)(x+2)=0$

$\Leftrightarrow (x-2)(x^2+x+2)=0$

$\Rightarrow x-2=0$ hoặc $x^2+x+2=0$
Nếu $x-2=0\Leftrightarrow x=2$ (tm)

Nếu $x^2+x+2=0$
$\Leftrightarrow (x+\frac{1}{2})^2=-\frac{7}{4}<0$ (vô lý)

Vậy pt có nghiệm duy nhất $x=2$

1 tháng 9 2021

\(x^2\left(x-5\right)+x-5=0\)

\(\Rightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)

\(x^2\left(x-5\right)+x-5=0\)

\(\Leftrightarrow x-5=0\)

hay x=5

29 tháng 1 2018

a,(x+5)(x-4)=0

=>x+5=0 hoặc x-4=0

=> x=-5 hoặc x=4

b, (x-1)(x-3)=0

=> x-1=0 hoặc x-3=0

=> x=1 hoặc x=3

c,x(x+1)=0

=> x=0 hoặc x+1=0

=> x=0 hoặc x=-1

d, x2-5x= 0<=>x(x-5)=0

=> x=0 hoặc x-5=0

=> x=0 hoặc x=5

29 tháng 1 2018

x ( x + 1 ) = 0

=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=0-1=-1\end{cases}}}\)

Vậy x = 0 hoặc - 1

25 tháng 10 2019

\(2x^2-6x=0\)

\(\Rightarrow2x.\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}.\)

\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)

\(x^3-16x=0\)

\(\Rightarrow x.\left(x^2-16\right)=0\)

\(\Rightarrow x.\left(x^2-4^2\right)=0\)

\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy \(x\in\left\{0;4;-4\right\}.\)

Chúc bạn học tốt!

26 tháng 6 2018