K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

E D F H K M N I

Bài làm

a) Xét tam giác DEH và tam giác DEF có:

\(\widehat{DHE}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{D}\) chung

=> Tam giác DEH ~ Tam giác DEF ( g - g )

=> \(\frac{DE}{DF}=\frac{HE}{EF}\)

\(\Rightarrow DE.EF=DF.EH\) ( đpcm )

b) Xét tam giác DEF vuông tại E có:

DF2 = DE2 + EF2

hay DF2 = 152 + 202

=> DF2 = 225 + 400

=> DF2 = 625

=> DF = 25 ( cm )

Vì tam giác DEH ~ Tam giác DEF ( cmt )

=> \(\frac{DH}{DE}=\frac{DE}{DF}\)

hay \(\frac{DH}{15}=\frac{15}{25}\Rightarrow DH=9\left(cm\right)\)

Ta có: DH + HF = DF

hay 9 + HF = 25

=> HF = 16 ( cm )

c) Xét tam giác HEF và tam giác EDF có:

\(\widehat{EHF}=\widehat{DEF}\left(=90^0\right)\)

\(\widehat{F}\) chung

=> Tam giác HEF ~ Tam giác EDF ( g - g )

=> \(\frac{EF}{DF}=\frac{HF}{EF}\Rightarrow EF^2=DF.HF\) ( đpcm )

a: \(S_{DEF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)

nên \(EH\cdot DF=ED\cdot EF\)

b: \(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

c: Xét ΔDEF vuông tại E có EH là đường cao

nên \(EF^2=DF\cdot HF\)

d: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN và ΔEFD có

EM/EF=EN/ED

góc MEN chung

Do đo: ΔEMN đồng dạng với ΔEFD

a: Xét ΔDEF vuông tại E cso EH là đường cao

nên \(EH\cdot DF=ED\cdot EF\)(hệ thức lượng)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{DF}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

Xét ΔEMN vuông tại E và ΔEFD vuông tại E có

EM/EF=EN/ED

Do đó ΔEMN\(\sim\)ΔEFD

Câu 1: 

a: \(S_{EDF}=\dfrac{EH\cdot DF}{2}=\dfrac{ED\cdot EF}{2}\)

nên \(EH\cdot DF=ED\cdot EF\)

\(DF=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(EH=\dfrac{ED\cdot EF}{FD}=12\left(cm\right)\)

b: Xét ΔEHD vuông tại H có HM là đường cao

nên \(EM\cdot ED=EH^2\left(1\right)\)

Xét ΔEHF vuông tại H có HN là đường cao

nên \(EN\cdot EF=EH^2\left(2\right)\)

Từ (1) và (2) suy ra \(EM\cdot ED=EN\cdot EF\)

hay EM/EF=EN/ED

=>ΔEMN\(\sim\)ΔEFD

a: Xét ΔEHD và ΔEHF có

EH chung

\(\widehat{HED}=\widehat{HEF}\)

ED=EF

Do đó: ΔEHD=ΔEHF

c: Ta có; ΔEHD=ΔEHF

=>HF=HD

mà H nằm giữa D và F

nên H là trung điểm của DF

=>\(HD=\dfrac{DF}{2}=3\left(cm\right)\)

ΔEHD vuông tại H

=>\(EH^2+HD^2=ED^2\)

=>\(EH^2=5^2-3^2=16\)

=>\(EH=\sqrt{16}=4\left(cm\right)\)

loading...

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó:ΔDHE=ΔDHF

b: EF=8cm nên HE=4cm

=>DH=3cm

c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó:ΔDMH=ΔDNH

Suy ra: HM=HN

7 tháng 3 2022

undefined

\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)

\(\Rightarrow DE=DF\)

\(\widehat{E}=\widehat{F}\)

\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)

\(DE=DF\left(cmt\right)\)

\(BH\text{ chung}\)

\(\widehat{E}=\widehat{F}\left(cmt\right)\)

\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)

\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)

\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)

\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(\text{Xét }\Delta DEH\text{ có:}\)

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)

\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)

\(DH\text{ chung}\)

\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^0\)

\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)

\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)