K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.

Δ=(-4m)^2-4(4m^2-m+2)

=16m^2-16m^2+4m-8=4m-8

Để phương trình có hai nghiệm phân biệt thì 4m-8>0

=>m>2

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)

=>\(\sqrt{16m^2-16m^2+4m-8}=2\)

=>\(\sqrt{4m-8}=2\)

=>4m-8=4

=>4m=12

=>m=3(nhận)

16 tháng 3 2022

Kiểm tra giúp mình yêu cầu thứ nhất nhé!

Có thể bạn tìm:

"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.

Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).

Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".

Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.

Bạn xem giúp mình yêu cầu cuối cùng nha!

Có thể bạn tìm:

"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.

Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".

18 tháng 5 2023

loading...

4 tháng 5 2023

\(m=0\) là okee rồi nè

còn \(x_1=x_2\) thì như sau :

\(\Leftrightarrow x_1-x_2=0\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=0^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

Tới đây rồi áp dụng cái Vi-ét vào là được m còn lại nhe.

4 tháng 5 2023

chắc chắn không bạn