Một hội trường có 100 chỗ ngồi được kê thành những dãy ghế, mỗi dãy ghế có số chỗ ngồi như nhau. Sau đó, khi sửa chữa người ta đã bổ sung thêm 5 dãy ghế. Để đảm bảo số ghế ngồi của hội trường như ban đầu, mỗi dãy ghế được kê ít hơn với ban đầu là 1 ghế. Hỏi ban đầu hội trường có bao nhiêu dãy ghế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số ghế là dãy ghế là x
số ghế trong 1 dãy là y
+) \(\hept{\begin{cases}x.y=120\\\left(x+2\right).\left(y-2\right)=120\end{cases}\left(x,y>0\right)}\)
+)\(\hept{\begin{cases}x.y=120\\x.y+2.y-2.x-4=120\end{cases}}\)
+) 2.y - 2.x = 4 <=> y- x = 2
=> y = x + 2
=> x . ( x + 2 ) =120
<=> x2 + 2.x - 120 = 0
<=> \(\orbr{\begin{cases}x=10\\x=-12\left(L\right)\end{cases}}\)=> ta có 10 dãy
=> y = 12
Giải thích các bước giải:
Gọi số dãy ghế ban đầu là x (dãy) (x>0)
=> số ghế của 1 dãy ban đầu là 120/x (ghế)
Khi kê thì kê được: x+2 (dãy) và số ghế 1 dãy là: 120/(x+2)
Ta có phương trình:
120x−120x+2=2⇒1x−1x+2=2120⇒x+2−xx(x+2)=160⇒60.2=x2+2x⇒x2+2x−120=0⇒x=10(do:x>0)120x−120x+2=2⇒1x−1x+2=2120⇒x+2−xx(x+2)=160⇒60.2=x2+2x⇒x2+2x−120=0⇒x=10(do:x>0)
Vậy trước khi sửa thì rạp có 10 dãy ghế.
Gọi số dãy ghế là x>2 và số người một dãy ghế là y>1
\(\Rightarrow\) Số người dự định: \(xy\)
Khi bớt 2 dãy ghế và mỗi ghế thêm 1 người thì số người ngồi: \(\left(x-2\right)\left(y+1\right)\)
Khi thêm 3 dãy ghế và mỗi dãy ghế bớt 1 người thì số người: \(\left(x+3\right)\left(y-1\right)\)
Theo bài ra ta có hệ: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy+8\\\left(x+3\right)\left(y-1\right)=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=10\\-x+3y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=5\end{matrix}\right.\)
Vậy có 20 dãy ghế
Gọi số dãy ghế ban đầu của hội trường là a (dãy), số chỗ ở mỗi dãy ban đầu ở hội trường là b (chỗ)
Nếu bớt 2 dãy ghế và mỗi dãy thêm 1 chỗ thì thêm được 8 chỗ: \(\left(a-2\right)\left(b+1\right)=ab+8\Leftrightarrow ab+a-2b-2=ab+8\Leftrightarrow a-2b-10=0\left(1\right)\)
Nếu thêm 3 dãy ghế và mỗi dãy ghế bớt đi 1 chỗ thì giảm 8 chỗ:
\(\left(a+3\right)\left(b-1\right)=ab-8\Leftrightarrow ab-a+3b-3=ab-8\Leftrightarrow-a+3b+5=0\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}a-2b=10\\-a+3b=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=20\\b=5\end{matrix}\right.\)
Vậy số dãy ghế ban đầu của hội trường là 20 dãy
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }
ban đầu hội trương có 12 dãy ghế because:
số người đến họp dư la 52 nguoi
52 nguoi ngoi 2 day ghe va them 2 cai
50 nguoi 2 day ghe
1 day ghe 25 nguoi
day ghe ban dau hoi truong la 300/25=12 day ghe
Gọi số dãy ghế ban đầu của hội trường là x, x ∈ N ∗
→ Số chỗ mỗi dãy ghế là : \(\frac{100}{x}\)
Vì sau khi sửa người ta đã bổ sung thêm 5 dãy ghế → số dãy ghế lúc sau là x + 5
→ Số chỗ mỗi dãy ghế lúc này là : \(\frac{100}{x+5}\)
Vì mỗi dãy ghế có chỗ ít hơn ban đầu 1 ghế
→ \(\frac{100}{x}-\frac{100}{x+5}=1\)
→ \(x^2+5x-500=0\)
→ x = 20