K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

a) Vì ABCD là hình thang cân có AB // CD nên:

AC = BD (1)

Xét ∆ADC và ∆BCD, ta có:

AC = BD (chứng minh trên )

AD = BC (ABCD cân)

CD cạnh chung

⇒ΔACD=ΔBCD(c.c.c)⇒ΔACD=ΔBCD(c.c.c)

⇒ACDˆ=BDCˆ⇒ACD^=BDC^

Hay OCDˆ=ODCˆOCD^=ODC^

Suy ra tam giác OCD cân tại O

Suy ra: (tính chất tam giác cân) (2)

Từ (1) và (2) suy ra: OA = OB

Lại có: MD=3MO(gt)⇒NC=3NOMD=3MO(gt)⇒NC=3NO

Trong tam giác OCD, ta có: MOMD=NONC=13MOMD=NONC=13

Suy ra: MN // CD (Định lí đảo của định lí Ta-lét )

Ta có: OD = OM + MD = OM + 3OM = 4OM

Trong tam giác OCD, ta có: MN // CD

⇒OMOB=MNAB⇒OMOB=MNAB (Hệ quả định lí Ta-lét)

⇒MNAB=OM2OM=12⇒MNAB=OM2OM=12

Vậy: AB=2MN=2.1,4=2,8(cm)AB=2MN=2.1,4=2,8(cm)

b) Ta có: CD−AB2=5,6−2,82=2,82=1,4(cm)CD−AB2=5,6−2,82=2,82=1,4(cm)

Vậy: MN=CD−AB2

22 tháng 9 2015

mk ko hiu cau hoi cua pan

 

22 tháng 9 2015

​ai **** mình mình cho 3 ****