K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2021

Mình sửa lại đề: Cho tam giác ABC nhọn (AB < AC) nội tiếp (O). Đường cao BD, CE cắt nhau tại H. EF cắt BC tại F. AF cắt lại (O) tại K. Gọi M là trung điểm của BC.

a) Từ gt dễ thấy tứ giác BCDE nội tiếp đường tròn tâm M.

b) Tứ giác BCDE nội tiếp nên theo phương tích ta có FB . FC = FD . FE.

Tứ giác AKBC nội tiếp nên theo phương tích ta có FK . FA = FB . FC.

Vậy ta có đpcm.

c) Ta có FA . FK = FE . FD nên theo phương tích đảo ta có tứ giác AKED nội tiếp.

Gọi giao điểm thứ hai của đường tròn đường kính AH và FH là N.

Khi đó FH . FN = FE . FD = FB . FC.

Suy ra tứ giác BHNC nội tiếp.

Ta có \(\widehat{DNC}=360^o-\widehat{DNH}-\widehat{CNH}=\left(180^o-\widehat{DNH}\right)+\left(180^o-\widehat{CNH}\right)=\widehat{DEH}+\widehat{HBC}=2\widehat{HBC}=\widehat{DMC}\).

Do đó tứ giác DNMC nội tiếp.

Tương tự tứ giác ENMB nội tiếp.

Suy ra \(\widehat{DNM}+\widehat{DNA}=180^o-\widehat{ACB}+\widehat{AED}=180^o\) nên A, N, M thẳng hàng.

Từ đó \(\widehat{MHN}=\widehat{ANH}=90^o\) nên \(FH\perp AM\).

(Câu c là trường hợp đặc biệt của định lý Brocard khi tứ giác BEDC nội tiếp đường tròn tâm M).

4 tháng 3 2021

Hình vẽ: undefined

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có

\(\widehat{EAC}\) chung

Do đó: ΔAEC đồng dạng với ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

=>\(AE\cdot AB=AD\cdot AC\)

Xét ΔABC có

CE,BD là đường cao

CE cắt BD tại H

DO đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại M

Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

=>AEHD là tứ giác nội tiếp

=>\(\widehat{EDH}=\widehat{EAH}\)

=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)

Xét tứ giác HDCM có

\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)

=>HDCM là tứ giác nội tiếp

=>\(\widehat{HDM}=\widehat{HCM}\)

=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)

=>DB là phân giác của \(\widehat{EDM}\)

20 tháng 2 2019

Giúp mình câu b,c,d nhanh nhé! Mai mình nộp. Cmon mấy bạn

2 tháng 6 2020

câu này dễ bạn tự làm thư đi

23 tháng 3 2016

a) Xét tam giác BEC

Ta có :

tam giác BEC nt (O)

BC đường kính

=> tam giác BEC vuông tại E

Xét tam giác BDC

Ta có :

tam giác BDC nt (o)

BC đường kính

=> tam giác BDC vuông tại D

Ta có:

góc BEC vuông tại E

góc BDC vuông tại D

Mà EC cắt DB tại H

=> H là trực tâm

=> AH vuông góc Với BC tại F

c) Xét tg BEHF

Ta có 

góc BEH= 90 độ

góc BFH = 90 độ

=> góc BEC + góc BDC = 90 độ + 90 độ = 180 độ

=>  tg BEHF nt(tổng 2 góc đối bằng 180 độ )

Ta có: B, E, D, F thuộc (O)

=> tg BEDF nt (O)

=> góc EBD = góc EFD ( 1 )

ta có: tg BEHF nt

=> góc EBH = góc EFH ( 2 )

từ (1) và (2)

=> góc EFD = góc EFH

=> AF // AF

23 tháng 8 2021

nt là j vậy

a) Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)

\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC

Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

30 tháng 7 2023

À thui biết làm r=))

Tham khảo:

d: Xét ΔAHF có FO/FA=FM/FH=1/2

nên OM//AH và OM/AH=FO/FA=1/2

Gọi giao cuảt AG với OH là G'

OM//AH

=>AG'/G'M=HG'/G'O=AH/OM=2

G là trọng tâm của ΔABC

=>AG/GM=2

=>AG'/G'M=AG/GM

=>G' trùng với G

=>HG=2GO

=>S AHG=2*S AGO