K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

A B C D E F

A B C D E

15 tháng 2 2018

* Hình thì dễ rồi. Bạn có thể tự vẽ 

                                                 * CA = CD ( gt )
a ) Tam giác ABC = t/g DEC vì {   * CB = CE ( gt )
                                                 * Góc ACB = DCE ( đđ )

b ) Ta có : 
 -Góc BAC = CDE ( T/g ABC = T/g DEC )
- Lại ở vị trí so le trong 
=> AB // DE 
c ) Ta có : 
AB // Cm ( gt ) (1)
AB // DE ( cmt ) (2) 
Từ (1),(2) => m // DE 

Xét ΔCAB và ΔCED có

\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)

\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)

Do đó: ΔCAB đồng dạng với ΔCED

=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)

=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)

=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

a: Xét ΔABC và ΔDEC có

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)

CB=CE
Do đó:ΔACB=ΔDCE

b: Xét tứ giác ABDE có 

C là trung điểm của AD

C là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: AB//DE

c: Xét ΔAMC và ΔDNC có 

AM=DN

\(\widehat{MAC}=\widehat{NDC}\)

AC=DC

Do đó: ΔAMC=ΔDNC

d: Xét tứ giác AMDN có 

AM//DN

AM=DN

Do đó: AMDN là hình bình hành

Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường

mà C là trung điểm của AD

nên C là trung điểm của MN

23 tháng 4 2022

https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489

trl câu này hộ mik với chiều nay cần dùng rkhocroi