Cho tam giác ABC có ba góc nhọn ,không là tam giác cân, AB<AC và nội tiếp đường tròn (O) ,đường kính BE.Các đường cao AD và BK của tam giác ABC cắt nhau tại điểm H.Đường thẳng BK cắt đường tròn (O) tại điểm thứ hai là F.Gọi I là trung điểm của cạnh AC.Cmr:
a, Tứ giác AFEC là hình thang cân.
b,BH=2OI và điểm H đối xứng với F qua điểm AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ a kẻ đường thẳng song song với AM cắt AI tại O chứng minh tam giác OAN = ABC
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
a: Xét ΔAKB và ΔAKC có
AB=AC
góc BAK=góc CAK
AK chung
=>ΔAKB=ΔAKC
ΔABC cân tại A
mà AK là phân giác
nên AK vuông góc CB
b: Xét ΔACB có
BM,AK là trung tuyến
BM cắt AK tại G
=>G là trọng tâm
c: BK=CK=18/2=9cm
=>\(AK=\sqrt{30^2-9^2}=3\sqrt{91}\left(cm\right)\)
=>\(AG=2\sqrt{91}\left(cm\right)\)