K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

đây nhé bạn

image

Bài 1: Cho ABC cân tại A kẻ AH ⊥ BC (HBC)a) Chứng minh: ∠ABH = ∠ABH suy ra AH là tia phân giác của ∠BACb) Kẻ HD ⊥ AB (D ∈ AB), HE ⊥ AC (E ∈ AC). Chứng minh ∠HDE cân.c) Nếu cho AB = 29 cm, AH = 20 cm. Tính độ dài cạnh AB?d) Chứng minh BC // DE.e) Nếu cho ∠BAC =  1200 thì △HDE trở thành tam giác gì? Vì sao?Bài 2: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.1/ Chứng minh: △ABD...
Đọc tiếp

Bài 1: Cho ABC cân tại A kẻ AH ⊥ BC (HBC)

a) Chứng minh: ∠ABH = ∠ABH suy ra AH là tia phân giác của ∠BAC

b) Kẻ HD ⊥ AB (D ∈ AB), HE ⊥ AC (E ∈ AC). Chứng minh ∠HDE cân.

c) Nếu cho AB = 29 cm, AH = 20 cm. Tính độ dài cạnh AB?

d) Chứng minh BC // DE.

e) Nếu cho ∠BAC =  1200 thì △HDE trở thành tam giác gì? Vì sao?

Bài 2: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.

1/ Chứng minh: △ABD = △EBD.

2/ Chứng minh: △ABE là tam giác đều.

3/ Tính độ dài cạnh BC.

Bài 3: Cho tam giác ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.

            a) Chứng minh: △ABC  cân.

            b) Chứng minh △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A.

            c) Từ H vẽ HM ⊥ AB (M ∈ AB) và kẻ HN ⊥ AC (N ∈ AC).

            Chứng minh : △BHM =△HCN 

            d) Tính độ dài AH.

            e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (điểm A thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy)

a) Chứng minh △OAI = △OBI,  IA = IB.

b) Cho biết OI = 10cm, AI = 6cm. Tính OA.

c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. So sánh AK và BM?

d) Gọi C là giao điểm của OI và MK. Chứng minh OC vuông góc với MK

Bài 5: Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN. Chứng minh ba điểm B, K, C thẳng hàng

Héo mì pờ li mọi người ơi!!!!!!!!!!!!!!!!!!!!!! TvT - TvT - TvT - TvT - TvT - TvT - TvT

1

Bài 1: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có 

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHDB=ΔHEC

Suy ra; HD=HE

hay ΔHDE cân tại H

d: Xét ΔABC có BD/AB=CE/AC

nên DE//BC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

7 tháng 2 2020

câu c) sao lại tính AB bn

7 tháng 2 2020

bạn ơi đầu bài bảo *nếu cho* mà

10 tháng 2 2020

!

10 tháng 2 2020

c) Tính AB làm gì nữa, đề cho AB = 29cm rồi.

Chúc bạn học tốt!

7 tháng 2 2022

c, Xét tam giác ABC cân tại A có AH là đường phân giác 

nên AH đồng thời là đường cao, là đường trung tuyến 

=> AH vuông BC

d, Vì AH là trung tuyến => BH = BC/2 = 4 cm 

Theo định lí Pytago tam giác ABH vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2}=3cm\)

e, Xét tam giác ADH và tam giác AEH có : 

^ADH = ^AEH = 900

AH _ chung 

DAH = ^EAH ( AH là đường phân giác ) 

Vậy tam giác ADH = tam giác AEH ( ch - gn ) 

=> HD = HE 

Xét tam giác HDE có HD = HE 

Vậy tam giác HDE cân tại H 

15 tháng 12 2017

a/ Xét tam giác ABH và tam giác ACH:

+ HB=HC (AH là đương trung trực của BC)

+ Góc AHB=Góc AHC( AH là đường trung trực của BC)

+ AH: cạnh chung

=> Tam giác ABH= Tam giác ACH (c-g-c)

15 tháng 12 2017

b)Tam giác ABH= Tam giác ACH (cmt)

=> +AB=AC ( hai cạnh tương ứng)

     +Góc BAH = Góc CAH (hai góc tương ứng)

Lại có: AH nằm giữa AB và AC

=> AH là tia phân giác của góc BAC