Viết phương trình tham số của đường thẳng d biết:
a) d đi qua M(1;-2) và nhận \(\overrightarrow{u}\)(3;4) làm VTCP
b) d đi qua A(-3;2) và song song với đường thẳng d': 4x+y-2=0
c) d đi qua gốc tọa độ và vuông góc với trục Ox
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
Lời giải:Điểm M,N có vẻ không có vai trò gì trong bài toán.
Ta có: $\overrightarrow{u_{\Delta}}=(2,-1)$
$\overrightarrow{u_{d'}}=(a,b)$
\(\cos (\Delta, d')=\frac{\overrightarrow{u_{\Delta}}.\overrightarrow{u_d'}}{|\overrightarrow{u_{\Delta}}||\overrightarrow{u_d'}|}=\frac{2a-b}{\sqrt{a^2+b^2}.\sqrt{5}}=\cos 45^0=\frac{\sqrt{2}}{2}\)
$\Rightarrow a=3b$ hoặc $a=-\frac{b}{3}$
PTĐT $d'$ là:
$-x+3y=0$ hoặc $3x+y=0$
Tại sao từ cos 450=\(\dfrac{\sqrt{2}}{2}\) thì lại => a=3b hoặc a=\(\dfrac{-b}{3}\) ạ ?
Vì Δ nhận vectơ làm vectơ pháp tuyến nên VTCP của Δ là .
Vậy phương trình tham số của đường thẳng Δ là .
Chọn C.
a: vecto AB=(6;-4)
PTTS là:
x=-6+6t và y=3-4t
b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)
Phương trình(d) là:
3(x-3)+(-2)(y-2)=0
=>3x-9-2y+4=0
=>3x-2y-5=0
a/ \(\left(d\right):3\left(x-1\right)+4\left(y+2\right)=0\)
\(\left(d\right):3x+4y+5=0\)
b/ \(\left(d\right)//\left(d'\right)\Rightarrow\overrightarrow{n}=\left(4;1\right)\)
\(\Rightarrow\left(d\right):4\left(x+3\right)+y-2=0\)
\(\left(d\right):4x+y+10=0\)
c/ \(\left(d\right)\perp Ox\Rightarrow\overrightarrow{n}=\left(1;0\right)\)
\(\Rightarrow x=0\)
Mà cái này là trục Oy luôn rồi còn đâu :<