Cho đường thẳng d: \(\left\{{}\begin{matrix}x=-2-t\\y=1+5t\end{matrix}\right.t\in R\) Tìm 3 điểm thuộc đường thẳng. Xác định vecto pháp tuyến của đường thẳng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)
\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)
\(\left(d\right):3x+4y-11=0\)
b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)
Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<
Giao điểm của (d) và (C) thỏa mãn:
\(\left(2+t\right)^2+\left(-1+3t\right)^2-2\left(2+t\right)-1=0\)
\(\Leftrightarrow10t^2-4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{2}{5}\end{matrix}\right.\)
Vậy (d) và (C) cắt nhau tại 2 điểm có tọa độ là: \(\left[{}\begin{matrix}\left(2;-1\right)\\\left(\dfrac{12}{5};\dfrac{1}{5}\right)\end{matrix}\right.\)
Gọi \(I\left(\frac{3}{2};-1\right)\) là trung điểm AB
\(\overrightarrow{AB}=\left(1;-4\right)\Rightarrow\) trung trực đường thẳng AB nhận \(\left(1;-4\right)\) là 1 vtpt
Phương trình trung trực d' của AB:
\(1\left(x-\frac{3}{2}\right)-4\left(y+1\right)=0\Leftrightarrow2x-8y-11=0\)
M là giao điểm của d và d'
\(\Rightarrow\) Tọa độ M là nghiệm:
\(2\left(1+2t\right)-8\left(-3-5t\right)-11=0\) \(\Rightarrow t=-\frac{15}{44}\)
\(\Rightarrow M\left(\frac{7}{22};-\frac{57}{44}\right)\)