Tìm a và b để đường thẳng d1:y=ac+b cắt đường thẳng d2:y=bx-a tại điểm M(2;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)
PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)
2 đt cắt tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)
a: Để (d1)//(d2) thì m+2=3m-2
\(\Leftrightarrow-2m=-4\)
hay m=2
\(d_1:mx+y=3m-1.\\ \Leftrightarrow-mx+3m-1=y.\)
\(d_2:x+my=m+1.\\ \Leftrightarrow my=-x+m+1.\\\Leftrightarrow y=\dfrac{-x}{m}+\dfrac{m}{m}+\dfrac{1}{m}.\Leftrightarrow y=-\dfrac{1}{m}x+1+\dfrac{1}{m}.\)
Thay m = 2 vào phương trình đường thẳng d1 ta có:
\(-2x+3.2-1=y.\\ \Leftrightarrow-2x+5=y.\)
Thay m = 2 vào phương trình đường thẳng d2 ta có:
\(y=-\dfrac{1}{2}x+1+\dfrac{1}{2}.\\ \Leftrightarrow y=\dfrac{-1}{2}x+\dfrac{3}{2}.\)
Xét phương trình hoành độ giao điểm của d1 và d2 ta có:
\(-2x+5=\dfrac{-1}{2}x+\dfrac{3}{2}.\\ \Leftrightarrow\dfrac{-3}{2}x=-\dfrac{7}{2}.\\ \Leftrightarrow x=\dfrac{7}{3}.\)
\(\Rightarrow y=\dfrac{1}{3}.\)
Tọa độ giao điểm của d1 và d2 khi m = 2 là \(\left(\dfrac{7}{3};\dfrac{1}{3}\right).\)
\(b,\left(d_3\right)\text{//}\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b\ne4\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=x+b\)
PT hoành độ giao điểm \(\left(d_2\right);\left(d_3\right)\) là \(x+b=-2x-2\)
Mà 2 đt cắt tại hoành độ \(-3\) nên \(x=-3\)
\(\Leftrightarrow b-3=4\Leftrightarrow b=7\)
Vậy \(\left(d_3\right):y=x+7\)
a: tọa độ giao điểm M là:
\(\left\{{}\begin{matrix}2x-1=-x+2\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\left(d_1\right):ax+b\) mới đúng chứ ? :<
Vì \(M\left(2;1\right)\in\left(d_2\right)\Rightarrow1=2b-a\Leftrightarrow a=2b-1\)
\(\Rightarrow\left(d_1\right):1=\left(2b-1\right).2+b\)
\(\Leftrightarrow5b=3\Leftrightarrow b=\frac{3}{5}\)
\(\Rightarrow a=2.\frac{3}{5}-1=\frac{1}{5}\)