Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt tọa độ giao điểm d1 và d2:
\(\left\{{}\begin{matrix}y=3x-5\\y=4x-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\4x-y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
\(\Rightarrow M\left(4;7\right)\)
Do đồ thị hàm bậc 2 đã cho qua A và M nên ta có:
\(\left\{{}\begin{matrix}3.\left(-2\right)^2+\left(-2\right)b+c=1\\3.4^2+4b+c=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2b+c=-11\\4b+c=-41\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-5\\c=-21\end{matrix}\right.\)
\(\Rightarrow y=x^2-5x-21\)
Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$
Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$
$M$ là trung điểm của $AB$ nên:
\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)
\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)
Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$
Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$
Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$
$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:
$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$
Do A thuộc d1 nên tọa độ có dạng \(A\left(a;3a-3\right)\)
Do B thuộc d2 nên tọa độ có dạng: \(B\left(b;-b-2\right)\)
Áp dụng công thức trung điểm:
\(\Rightarrow\left\{{}\begin{matrix}a+0=2b\\3a-3+2=2\left(-b-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-2b=0\\3a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(-\dfrac{3}{4};-\dfrac{21}{4}\right)\\B\left(-\dfrac{3}{8},-\dfrac{13}{8}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\left(\dfrac{3}{8};\dfrac{29}{8}\right)\)
Phương trình d có dạng:
\(29x-3\left(y-2\right)=0\Leftrightarrow29x-3y+6=0\)
(d) đi qua A, B => \(\overrightarrow{u_d}\) => \(\overrightarrow{n_d}\) => phương trình (d) biết vtpt và điểm đi qua
a. Gọi M là giao điểm của d1 và d2 => Tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x+y-2=0\\x-y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{3}\\y=\frac{-4}{3}\end{matrix}\right.\) => M\(\left(\frac{5}{3};\frac{-4}{3}\right)\)
b. A ∈ d1=> A(a; 2 - 2a) ; B ∈ d2 => B (b ; b - 3)
Theo đề, ta có hệ: \(\left\{{}\begin{matrix}a+b=4\\-2a+b-1=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{-5}{3}\\b=\frac{17}{3}\end{matrix}\right.\)
=> A(\(\frac{-5}{3};\frac{16}{3}\)) ; B(\(\frac{17}{3};\frac{8}{3}\))
=> (d): 4x + 11y - 52 = 0
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x+y-1=0\\3x-y+5=0\end{matrix}\right.\) \(\Rightarrow A\left(-1;2\right)\)
Gọi \(\alpha\) là góc giữa d1 và d2 \(\Rightarrow cos\alpha=\frac{\left|3-1\right|}{\sqrt{2}.\sqrt{10}}=\frac{\sqrt{5}}{5}\)
Do \(AB=BC\Rightarrow\Delta ABC\) cân tại B
Gọi \(\beta\) là góc giữa \(\Delta\) và \(d_1\) \(\Rightarrow\alpha=\beta\)
Giả sử \(\Delta\) nhận \(\left(a;b\right)\) là vtpt
\(\Rightarrow\frac{\left|a+b\right|}{\sqrt{2}\sqrt{a^2+b^2}}=\frac{\sqrt{5}}{5}\)
\(\Leftrightarrow5\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+10ab+3b^2=0\Rightarrow\left[{}\begin{matrix}3a=-b\\a=-3b\end{matrix}\right.\)
\(\Rightarrow\Delta\) có 2 vtpt là \(\left(1;-3\right);\left(3;-1\right)\)
Có 2 pt đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x-2\right)-3\left(y-2\right)=0\\3\left(x-2\right)-1\left(y-2\right)=0\end{matrix}\right.\)
\(\left(d_1\right):ax+b\) mới đúng chứ ? :<
Vì \(M\left(2;1\right)\in\left(d_2\right)\Rightarrow1=2b-a\Leftrightarrow a=2b-1\)
\(\Rightarrow\left(d_1\right):1=\left(2b-1\right).2+b\)
\(\Leftrightarrow5b=3\Leftrightarrow b=\frac{3}{5}\)
\(\Rightarrow a=2.\frac{3}{5}-1=\frac{1}{5}\)