Cho B = 4^1 + 4^2 + 4^3 + ........... + 4^300 . Chứng minh rằng B chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4+4^2+4^3+...+4^{300}\)
\(B=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{299}+4^{300}\right)\)
\(B=5.4+5.4^3+...+5.4^{299}\)
\(B=5\left(4+4^3+4^5+...+4^{299}\right)\)
\(\Rightarrow B⋮5\)
\(\sqrt{\sqrt[]{}\sqrt[]{}\begin{matrix}&\\&\\&\end{matrix}}\)
\(B=4^1+4^2+4^3+...+4^{300}\)
\(B=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{299}+4^{300}\right)\)
\(B=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{299}\left(1+4\right)\)
\(B=4.5+4^3.5+...+4^{299}.5\)
\(B=5\left(4+4^3+...+4^{299}\right)\)
Có : \(B=5\left(4+4^3+...+4^{299}\right)⋮5\)
\(\Rightarrow B⋮5\)
Ta có B= (41+42)+(43+44)+.....+(4299+4300)
B= 41(1+4)+43(1+4)+...+4299(1+4)
B= 5.(41+43+...+4299)
vì 5 chia hết cho 5 => B chia hết cho 5
B= 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 +...+ 298 - 299 - 300 + 301 + 302
= 1 + ( 2 - 3 - 4 + 5) + ( 6 - 7 - 8 + 9) + ( 10 - 11 - 12 + 13) +...+ (298 - 299 - 300 + 301 ) + 302
= 1 + 0 + 0 +...+ 0 + 302
= 1 + 302 = 303 chia hết cho 3
=> B chia hết cho 3
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300
\(B=4^1+4^2+...+4^{300}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{299}\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{299}.5=5\left(4+4^3+...+4^{299}\right)⋮5\)
cảm ơn