Cho tam giác ABC, Kẻ đường cao AH. Biết BH = 18cm, CH = 32cm. Tính các cạnh AB và AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào ΔABHta có :
AB^2=AH^2+BH^2
=AH^2+18^2
=AH^2+324
⇒AH^2=AB^2−324
Áp dụng định lý Py-ta-go vào ΔAHC ta có
AC^2=HC^2+AH^2
=322+(AB^2−324)
=1024−324+AB^2
=700+AB^2
⇒AC=√700+AB2
Nguyễn Thảo Nguyên
em chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/99235669166.html
Ta có: BC=HB+HC=18+32=50
-Xét \(\Delta ABC\)có: BC2=AB2+AC2 (Theo định lý Py-ta-go)
Mà \(\hept{\begin{cases}AB^2=AH^2+HB^2\\AC^2=AH^2+HC^2\end{cases}}\)
=> BC2=AH2+HB2+AH2+HC2
=> 502=2AH2+182+322
=> 2500=2AH2+324+1024
=> 2500=2AH2+1348
=> 2AH2=1152
=> AH2=576
=> AH=24
=> \(\hept{\begin{cases}AB^2=AH^2+HB^2=24^2+18^2=900\\AC^2=AH^2+HC^2=24^2+32^2=1600\end{cases}}\)
=> AB=30
AC=40
Vậy AB=30 cm
AC=40cm
\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)
\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)
\(\Rightarrow AB=30\left(cm\right)\)
\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)
\(\Rightarrow AC=40\left(cm\right)\)
Xét tam giác AHB vuông tại H có:
AH2+HB2=AB2(định lý pythagore) (1)
Xét tam giác AHC vuông tại H có:
HA2+HC2=AC2 (định lý pythagore) (2)
Từ (1) và (2) ta cộng lại vế theo vế, có:
2AH2+BH2+CH2=AB2+AC2
<=>2AH2+BH2+CH2=BC2
<=> 2AH2+182+322=(18+32)2
<=>2AH2+1348=2500
<=>2AH2=2500-1348
<=>2AH2=1152
<=>AH2=1152:2
<=>AH2=576
<=>AH=\(\sqrt{576}\)
<=>AH=24(cm)
-Ta thay AH=24cm vào (1) ta có:
HB2+AH2=AB2
<=>182+242=AB2
<=>900=AB2
<=>\(AB=\sqrt{900}=30\)(cm)
-Ta thay AH=24cm vào (2) ta có:
HC2+HA2=AC2
<=>322+242=AC2
<=>1600=AC2
\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)
Vậy AB=30cm; AC=40cm
A B C H
(thêm kí hiệu góc vuông ở đỉnh A nx nha bạn, mình quên)
Cm:
Áp dụng định lí Py-ta-go:
Xét \(\Delta\)AHB có:
AH2 + BH2 = AB2 (1)
Xét \(\Delta\)AHC có:
AH2 + CH2 = AC2 (2)
Cộng (1) và (2) vế theo vế, ta được:
2AH2 + BH2 + CH2 = AB2 + AC2
<=> 2AH2 + BH2 + CH2 = BC2
<=> 2AH2 + 182 + 322 = (18+32)2
<=> 2AH2 + 1348 = 2500
<=> 2AH2 = 1152
<=> AH2 = 576
<=> AH = \(\sqrt{576}\)= 24 (cm)
Thay AH = 24 và BH = 18 vào (1) ta được:
242 + 182 = AB2
<=> 900 = AB2
<=> AB = \(\sqrt{900}\)= 30 (cm)
Thay AH = 24 và CH = 32 vào (2) ta được:
242 + 322 = AC2
<=> 1600 = AC2
<=> AC = \(\sqrt{1600}\)= 40 (cm)
Vậy AB = 30 cm ; AC = 40 cm
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
A B C H 8cm 32cm ??? Chỉ mag TC minh họa
AD định lí Py ta go
\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)
\(\Rightarrow AB=AH^2+64\)
Thực hiện tiếp vs AC