Cho 4 số nguyên dương a<b<c<d
thoả mãn ad=bc.Giả sử a+d và b+c là các luỹ thừa của 2. Chứng minh a=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Vì y và x tỉ lệ thuận với nhau nên:
hay
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
Trong tất cả các số đã cho có ít nhất 1 số nguyên dương vì nếu trái lại tất cả đều la số nguyên âm thì tổng của 13 số bất kì sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn lại 12 số chia làm 3 nhóm. Theo đầu bài, mỗi nhóm có tổng là 1 số dương nên tổng của 3 nhóm là 1 số nguyên dương.
a) a là một số nguyên dương. Tích a . b là một số nguyên dương
Suy ra b là một số nguyên dương
b) a là một số nguyên dương. Tích a . b là một số nguyên âm
Suy ra b là một số nguyên âm
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
ko mất tính tổng quát ta giả sử a<b<c<d
+ a=1 thì hiển nhiên
+TH: a>1
a+d và b+c là các lũy thừa của 2 nên $a=2^{x}-mvàvàd=2^{y}+m$
a+d là lũy thừa của 2 nên x=y do đó $a=2^{x}-mvàvàd=2^{x}+m$
tương tự với b+c có $b=2^{y}-nvàvàc=2^{y}+n$
từ điều kiện a<b<c<d bạn có vô lý