tính tổng của 5 số nguyên liên tiếp trong đó số ở giữa là a ( a thuộc Z) có thể khẳng định tổng này chia hết cho số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) Gọi 3 số nguyên liên tiếp là :\(n-1,n,n+1\)
\(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3
Gọi năm số nguyên liên tiếp là \(n-2,n-1,n,n+1,n+2\).Ta có :
\(\left(n+2\right)+\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=5n\)chia hết cho 5
b) Gọi 2 số nguyên liên tiếp là \(n,n+1\): Ta có
\(n+\left(n+1\right)=2n+1\)
Vì \(2n⋮2,\)\(1\)không chia hết cho \(2\)nên \(2n+1\)không chia hết cho 2
Vậy tổng hai số nguyên liên tiếp không chia hết cho 2
Gọi 4 số nguyên liên tiếp là ;\(n-1,n,n+1,n+2\).Ta có :
\(\left(n-1\right)+n+\left(n+1\right)+\left(n+2\right)=4n+2\)
Vì \(4n⋮4,\)2 không chia hết cho 4 nên \(4n+2\)không chia hết cho 4
Nhận xét : Tổng của k só nguyên liên tiếp chia hết cho k khi và chỉ khi k lẻ
Chúc bạn học tốt ( -_- )
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
1, Số tận cùng là 4 thì chia hết cho 2 Đ
2, Số chia hết cho 2 thì có chữ số tận cùng là 4 Đ
3, Số chia hết cho 5 thì có chữ số tận cùng là 5 Đ
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7 S
5, Số chia hết cho 9 có thể chia hết cho 3 Đ
6, Số chia hết cho 3 có thể chia hết cho 9 S
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9 S
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r Đ
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó S
10, Hợp số là số tự nhiên nhiều hơn 2 ước Đ
11, Một số nguyên tố đều là số lẻ S
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5 S
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8 Đ
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số Đ
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố Đ
16, Hai số nguyên tố là hai số nguyên tố cùng nhau S
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau S
ht
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
tổng 5 số đó là a và khẳng định số này chia hết cho +5;-5;+1;-1
kết bạn với mình nhé mọi người