(x+3)(y-6)=-4
/x/×(y+1)=3
xy+2y+x=0
tim x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực.
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
a) \(\left(x-2y\right)\left(3xy+6x^2+x\right)\)
\(=x\left(3xy+6x^2+x\right)-2y\left(3xy+6x^2+x\right)\)
\(=3x^2y+6x^3+x^2-6xy^2-12x^2y-2xy\)
\(=6x^3+x^2-9x^2y-6xy^2-2xy\)
b) \(\left(18x^4y^3-24x^3y^4+12x^3y^3\right):\left(-6x^2y^3\right)\)
\(=18x^4y^3:\left(-6x^2y^3\right)-24x^3y^4:\left(-6x^2y^3\right)+12x^3y^3:\left(-6x^2y^3\right)\)
\(=-3x^2+4xy-2x\)
a) (�−2�)(3��+6�2+�)(x−2y)(3xy+6x2+x)
=�(3��+6�2+�)−2�(3��+6�2+�)=x(3xy+6x2+x)−2y(3xy+6x2+x)
=3�2�+6�3+�2−6��2−12�2�−2��=3x2y+6x3+x2−6xy2−12x2y−2xy
=6�3+�2−9�2�−6��2−2��=6x3+x2−9x2y−6xy2−2xy
b) (18�4�3−24�3�4+12�3�3):(−6�2�3)(18x4y3−24x3y4+12x3y3):(−6x2y3)
=18�4�3:(−6�2�3)−24�3�4:(−6�2�3)+12�3�3:(−6�2�3)=18x4y3:(−6x2y3)−24x3y4:(−6x2y3)+12x3y3:(−6x2y3)
=−3�2+4��−2�=−3x2+4xy−2x
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
mik ko bít
I don't now
................................
.............
1. rút gọn
a)x^8+x^6 +x^6+x^5+x^4+x^3+x^2+x+1/x^3 -1
b)x^5+x+1/x^3+x^2+x
y^3-x^3/x^3-3x^2y+3xy^2-y^3
a) \(\dfrac{x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^3-1}\)
\(=\dfrac{\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^6+x^3+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^6+x^3+1}{x-1}\)
b) \(\dfrac{x^5+x+1}{x^3+x^2+x}\)
\(=\dfrac{x^5+x^4+x^3+x^2-x^4-x^3-x^2+x+1}{x^3+x^2+x}\)
\(=\dfrac{\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+1}{x}\)
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)