\(\hept{\begin{cases}4x+4y=1\\\frac{1}{2x}+\frac{1}{2y}=9\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
ĐK: \(x,y\ne-1\)
hpt \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{8}{9}\\\frac{4x+4y-5xy+4}{xy+x+y+1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{8}{9}\\4-\frac{9xy}{\left(x+1\right)\left(y+1\right)}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2=\frac{8}{9}\\ab=\frac{4}{9}\end{cases}}\)\(\left(a;b\right)=\left(\frac{x}{y+1};\frac{y}{x+1}\right)\)
\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)
Vậy HPT có nghiệm.....
\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)
Vậy HPT có nghiệm.....
\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)