Giair phương trình sau:
\(x^2+4x-7=\left(x+4\right)\sqrt{x^2-7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐKXĐ: $x\geq \frac{-3}{5}$
PT $\Leftrightarrow 5x+3=3-\sqrt{2}$
$\Leftrightarrow x=\frac{-\sqrt{2}}{5}$
2. ĐKXĐ: $x\geq \sqrt{7}$
PT $\Leftrightarrow (\sqrt{x}-7)(\sqrt{x}+7)=4$
$\Leftrightarrow x-49=4$
$\Leftrightarrow x=53$ (thỏa mãn)
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
ĐKXĐ: mọi \(x\)
Ta có \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow\left(x+4\right)\sqrt{x^2+7}-x^2-4x-7=0\)
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-x^2-4x+4x-7+16=0\) ( thêm bớt )
\(\Leftrightarrow\left(x+4\right)\left(\sqrt{x^2+7}-4\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\dfrac{x^2-9}{\sqrt{x^2+7}+4}-\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(\dfrac{x+4}{\sqrt{x^2+7}+4}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\\dfrac{x+4}{\sqrt{x^2+7}+4}-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\dfrac{x+4}{\sqrt{x^2+7}+4}=1\left(\text{*}\right)\end{matrix}\right.\)
Giải (*), ta được phương trình
\(\left(\text{*}\right)\Leftrightarrow x+4=\sqrt{x^2+7}+4\)
\(\Leftrightarrow\sqrt{x^2+7}=x\)
\(\Leftrightarrow x^2+7=x^2\)
\(\Leftrightarrow7=0\) ( vô lý )
Suy ra phương trình (*) vô nghiệm
Vậy \(S=\left\{\pm3\right\}\)
a, Ta có : \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-y^2-x+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=1\\\left(x-y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
TH1 : \(x-y=0\Rightarrow x=y\)
- Thay vào PT ( I ) ta được : \(x^2+x^2=2x^2=1\)
\(\Rightarrow x=y=\dfrac{\sqrt{2}}{2}\)
TH2 : \(x+y-1=0\)
- Kết hợp PT ( I ) ta được hệ : \(\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\-2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm là \(S=\left\{\left(\dfrac{\sqrt{2}}{2};\dfrac{\sqrt{2}}{2}\right);\left(1;0\right);\left(0;1\right)\right\}\)
b.
Đặt \(\sqrt{x^2+7}=t>0\)
\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)
\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+4+x-4}{2}=x\\t=\dfrac{x+4-x+4}{2}=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vô-nghiệm\right)\\x^2+7=16\end{matrix}\right.\)
\(\Rightarrow x=\pm3\)
ĐK : | x| \(\ge\sqrt{7}\)
x2 + 4x - 7 = ( x + 4 ) \(\sqrt{x^2-7}\)
\(\Leftrightarrow\left(x^2-7\right)+4x-\left(x+4\right)\sqrt{x^2-7}=0\)
\(\Leftrightarrow\left(x^2-7\right)+4x-x\sqrt{x^2-7}-4\sqrt{x^2-7}=0\)
\(\Leftrightarrow\sqrt{x^2-7}\left(\sqrt{x^2-7}-x\right)-4\left(\sqrt{x^2-7}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2-7}-x\right)\left(\sqrt{x^2-7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}-x=0\\\sqrt{x^2-7}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}=x\\\sqrt{x^2-7}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2-7=x^2\\x^2-7=16\end{cases}}}\)
<=> x2 =23 <=> x = \(\pm\sqrt{23}\)( T/m đk)
Có thể đặt \(t=\sqrt{x^2-7}\left(t\ge0\right)\)cho dễ nhìn