Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
a) \(\sqrt{5x}=\sqrt{35}\)
ĐK : x ≥ 0
Bình phương hai vế
pt ⇔ 5x = 35 ⇔ x = 7 ( tm )
b) \(\sqrt{36\left(x-5\right)}=18\)
ĐK : x ≥ 5
Bình phương hai vế
pt ⇔ 36( x - 5 ) = 324
⇔ x - 5 = 9
⇔ x = 14 ( tm )
c) \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
⇔ \(\sqrt{4^2\left(1-2x\right)^2}=20\)
⇔ \(\sqrt{\left(4-8x\right)^2}=20\)
⇔ \(\left|4-8x\right|=20\)
⇔ \(\orbr{\begin{cases}4-8x=20\\4-8x=-20\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
d) \(\sqrt{3-2x}\le\sqrt{5}\)
ĐK : x ≤ 3/2
Bình phương hai vế
bpt ⇔ 3 - 2x ≤ 5
⇔ -2x ≤ 2
⇔ x ≥ -1
Kết hợp với ĐK => Nghiệm của bpt là -1 ≤ x ≤ 3/2
\(a,\sqrt{5x}=\sqrt{35}\left(x\ge0\right)\)
\(\Leftrightarrow5x=35\)
\(\Leftrightarrow x=7\left(tm\right)\)
vậy...
b, \(\sqrt{36\left(x-5\right)}=18\left(x\ge5\right)\)
\(\Leftrightarrow6\sqrt{x-5}=18\)
\(\Leftrightarrow\sqrt{x-5}=3\)
\(\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=14\left(tm\right)\)
vậy...
c, \(\sqrt{16\left(1-4x+4x^2\right)}-20=0\)
\(\Leftrightarrow4\sqrt{\left(1-2x\right)^2}=20\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
vậy....
\(d,\sqrt{3-2x}< 5\left(x< 1.5\right)\)
\(\Leftrightarrow3-2x< 25\)
\(\Leftrightarrow-2x< 22\)
\(\Leftrightarrow x>-11\)
\(\Rightarrow-11< x< 1.5\)
vạy.
ĐK : | x| \(\ge\sqrt{7}\)
x2 + 4x - 7 = ( x + 4 ) \(\sqrt{x^2-7}\)
\(\Leftrightarrow\left(x^2-7\right)+4x-\left(x+4\right)\sqrt{x^2-7}=0\)
\(\Leftrightarrow\left(x^2-7\right)+4x-x\sqrt{x^2-7}-4\sqrt{x^2-7}=0\)
\(\Leftrightarrow\sqrt{x^2-7}\left(\sqrt{x^2-7}-x\right)-4\left(\sqrt{x^2-7}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2-7}-x\right)\left(\sqrt{x^2-7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}-x=0\\\sqrt{x^2-7}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}=x\\\sqrt{x^2-7}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2-7=x^2\\x^2-7=16\end{cases}}}\)
<=> x2 =23 <=> x = \(\pm\sqrt{23}\)( T/m đk)
Có thể đặt \(t=\sqrt{x^2-7}\left(t\ge0\right)\)cho dễ nhìn
Điều kiện \(1\le x\le4\)
Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{4-x}=b\end{cases}}\)
Ta có \(\hept{\begin{cases}a+b+ab=5\\a^2+b^2=3\end{cases}}\)
=> PT vô nghiệm
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)
d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)
ĐK:\(x\ge-3\)
\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)
\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)
\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)
\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)