K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

a ) Ta có : \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+ac+bc\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2c^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+8abc.0\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Lại có : \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}\)

\(=\dfrac{a^4+b^4+c^4+a^4+b^4+c^4}{2}=\dfrac{2\left(a^4+b^4+c^4\right)}{2}\)

\(=a^4+b^4+c^4\left(đpcm\right)\)

18 tháng 9 2018

b ) \(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3+3a^2b+3b^2a+3c^2d+3d^2c=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[ab\left(c+d\right)-cd\left(c+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\left(đpcm\right)\)

13 tháng 10 2017

Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng

11 tháng 10 2017

Viết đề............

bài 2 đề sai cmnr

21 tháng 5 2016

Ta có : \(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\ge\left(\sqrt{a^2b^2}+\sqrt{b^2c^2}+\sqrt{c^2d^2}\right)^2=\left(ab+bc+cd\right)^2\) (áp dụng bđt Schwartz)

Dấu " = " xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Do đó, kết hợp cùng giả thiết suy ra đpcm

18 tháng 12 2019

Đề bài ?

18 tháng 12 2019

Đề bài:cho a/b=c/d chứng minh rằng

16 tháng 12 2020

Ta có : AC=5cm; BC=3cm và AD=7cm

=>CD=AD-AC=7-5=2cm

=>CD=2cm

=>AB=AC-BC=5-3=2cm

=>AB=2cm

=>AB=CD ( vì 2cm=2cm ) 

 

vì BC<AC(3<5)=>B nằm giữa A và C nên

AC=AB+BC

=>AB=AC-BC=5-3=2cm

vì AC<AD(5<7)=>C nằm giữa A và D nên

AD=AC+CD

=>CD=AD-AC=7-5=2cm

=>AB=CD(2=2)