Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng
Cho a,b,c,d>0 và a+b+c+d=4
Chúng minh rằng \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
Cho a,b,c,d>0 và a+b+c+d=4
Chúng minh rằng \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
ta có ab( a\(^2\)+b\(^2\))\(\le\)2( tự CM)
=> ( a\(^2\)+ b\(^2\))\(\le\)2/ab
=> ( a\(^2\)+ b\(^2\))/2\(\le\)1/ab
làm tương tự ta có ( c\(^2\)+d\(^2\))/2\(\le\)1/cd
cộng vế tương ứng vế. Hết.
mình dùng tv ₫ể viết, có một Số chỗ hơi "khắm". Xin thứ lỗi.
Bạn Huy Le ơi, cho mik hỏi tại sao ab(a^2+b^2)<=2 vậy
Bạn bảotự chứng minh được à, tại saolại như thế vậy ??!!
Giả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcmGiả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcm
#)Giải :
Giải sử cả ba BĐT đều đúng
Ta có : a + b < c + d và ab + cd > ( a + b )( c + d )
=> ab + cd > ( a + b )2 ≥ 4ab ( BĐT Cauchy )
=> cd ≥ 3ab (1)
Ta có : ( a + b )cd < ( c + d )ab và ( c + d )( a + b ) < ab + cd
=> ( a + b )2 .cd < ( c + d )( a + b )ab < ( ab + cd )ab
Mà ( a + b )2 .cd ≥ 4abcd ( BĐT Cauchy )
=> ( ab + cd )ab > 4abcd
=> ab > 3cd (2)
Từ (1) và (2) => ab + cd > 4( ab + cd ) => ab + cd < 0 mâu thuẫn với giả thiết a,b,c,d
=> Không thể đồng thời xảy ra cả ba BĐT trên ( đpcm )