Từ một điểm A nằm ở ngoài đường tròn (O; R ) . Vẽ hai tiếp tuyến AB , AC với đường tròn ( B ; C là các tiếp điểm ) . Vẽ dây BD vuông góc với BC . Đường vuông góc với DO tại O cắt tia DB tại E . Chứng minh tứ giác AOBE là hình thang cân .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O D E H K I M N P S
a/
Ta có
\(\widehat{ABO}=\widehat{ACO}=90^o\) => B và C cùng nhìn AO dưới 1 góc \(90^o\)
=> B; C nằm trên đường tròn đường kính AO => A; B; O; C cùng nằm trên 1 đường tròn
b/
Xét tg vuông ABO và tg vuông ACO có
OA chung; OB=OC (bán kính (O)) => tg ABO = tg ACO (hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
Xét tg ABH và tg ACH có
AH chung
AB=AC (2 tiếp tuyến cùng xp từ 1 điểm...)
tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
=> tg ABH = tg ACH (c.g.c) \(\Rightarrow\widehat{AHB}=\widehat{AHC}\) Mà \(\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\Rightarrow OA\perp BC\) tại H
Ta có ID=IE (gt) \(\Rightarrow OI\perp DE\) (trong đường tròn đường thẳng đi qua tâm và trung điểm của dây cung thì vuông góc với dây cung)
Xét tg vuông AHK và tg vuông AIO có
\(\widehat{OAI}\) chung
=> tg AHK đồng dạng với tg AIO
\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AK}{AO}\Rightarrow AH.AO=AK.AI\)
c/
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,C,O cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD
nên \(OD^2=OH\cdot OA\)
=>\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
Xét ΔODA và ΔOHD có
\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)
\(\widehat{DOA}\) chung
Do đó: ΔODA đồng dạng với ΔOHD
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=> A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Ta có: ΔOED cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)ED tại I
=>OI\(\perp\)AE tại I
Xét ΔAIO vuông tại H và ΔAHK vuông tại H có
\(\widehat{IAO}\) chung
Do đó: ΔAIO~ΔAHK
=>\(\dfrac{AI}{AH}=\dfrac{AO}{AK}\)
=>\(AH\cdot AO=AI\cdot AK\)
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp đường tròn đường kính MO
Tâm là trung điểm của MO
Bán kính là MO/2
b: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
góc ABK=1/2*sđ cung AK=90 độ
=>AB vuông góc BK
=>BK//OM
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
mà OB=OD(=R)
nên \(OH\cdot OA=OD^2\)
=>\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
Xét ΔOHD và ΔODA có
\(\dfrac{OH}{OD}=\dfrac{OD}{OA}\)
\(\widehat{HOD}\) chung
Do đó: ΔOHD đồng dạng với ΔODA
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay \(OA\perp BC\)(đpcm)
b) Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
nên A,B,O,C cùng thuộc một đường tròn(đpcm)
A E B C O D
Ta có AB,AC là tiếp tuyến của (O)
\(\Rightarrow AB\perp OB,AC\perp OC,AO\perp CB\)
\(\Rightarrow ABOC\) nội tiếp đường tròn đường kính AO (1)
Vì \(BD\perp BC\Rightarrow AO//DE\left(\perp BC\right)\Rightarrow\widehat{DBC}=90^0\) = > CD là đường kính của (O)
Mà \(EO\perp CD,BC\perp DE\Rightarrow\widehat{EBC}=\widehat{EOC}=90^0\)
\(\Rightarrow ECOB\) nội tiếp (2)
Từ (1) , (2) \(\Rightarrow A,E,B,O,C\) nội tiếp đường tròn đường kính AO
\(\Rightarrow EAOB\) nội tiếp
\(\Rightarrow\widehat{EAO}+\widehat{EBO}=180^0\)
Mà \(\widehat{EBO}+\widehat{BOA}=180^0\left(BE//AO\right)\)
\(\Rightarrow\widehat{EAO}=\widehat{BOA}\)
\(\Rightarrow AOBE\) là hình thang cân