K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4:

Ta có: x-13>8

⇔x-13+15>8+15

hay x+2>23(đpcm)

Bài 5:

Ta có: x+3>27

⇔x+3-6>27-6

hay x-3>21(ddpcm)

23 tháng 4 2020

Bài 4: x - 13 > 8

\(\Leftrightarrow\) x - 18 - 8 > 0

\(\Leftrightarrow\) x - 26 > 0

\(\Leftrightarrow\) x > 26

x + 2 > 23

\(\Leftrightarrow\) x + 2 - 23 > 0

\(\Leftrightarrow\) x - 21 > 0

\(\Leftrightarrow\) x > 21

Vì x > 26 > 21 nên ĐT được CM

Bài 5: x + 3 > 27

\(\Leftrightarrow\) x + 3 - 27 > 0

\(\Leftrightarrow\) x - 24 > 0

\(\Leftrightarrow\) x > 24

x - 3 > 21

\(\Leftrightarrow\) x - 3 - 21 > 0

\(\Leftrightarrow\) x - 24 > 0

Vì x > 24 = 24 nên ĐT được CM

Chúc bn học tốt!!

Ta có: x-8>9

\(\Leftrightarrow x-17>0\)

\(\Leftrightarrow x-17+20>20\)

hay x+3>20(đpcm)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

AH
Akai Haruma
Giáo viên
30 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM:
$x^2+4\geq 2\sqrt{4x^2}=2|2x|\geq 4x$

$y^2+1\geq 2\sqrt{y^2}=2|y|\geq 2y$

$\Rightarrow x^2+y^2+5\geq 4x+2y=2(x+y)+2x\geq 2.3+2.2=10$

$\Rightarrow x^2+y^2\geq 5$

Ta có đpcm

Dấu "=" xảy ra khi $(x,y)=(2,1)$

x+5 > 15

<=> (x+5)-7> 15-7

<=>x-2 >8 (ĐPCM)

27 tháng 10 2019

X^3>Y^3 vì X>Y và hai số đều có số mũ bằng nhau nên x^>y^3

27 tháng 10 2019

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì \(x>y\Rightarrow x-y>0\)

và \(x>y>0\)nên \(x^2+xy+y^2>0\)

Suy ra \(\left(x-y\right)\left(x^2+xy+y^2\right)>0\)(2)

Từ (1) và (2) suy ra \(x^3-y^3>0\)

\(\Rightarrow x^3>y^3\left(đpcm\right)\)