Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11:
a. $2x^3(x^2-3x+4)=2x^5-6x^4+8x^3$
b. $(x+3)(x-5)=x^2-5x+3x-15=x^2-2x-15$
c. $(x+5)^2-(x+4)(x-4)=x^2+10x+25-(x^2-16)$
$=10x+41$
Câu 12:
a.
$x^2-3xy=x(x-3y)$
b.
$x^2+6x+9-y^2=(x^2+2.x.3+3^2)-y^2=(x+3)^2-y^2$
$=(x+3-y)(x+3+y)$
Bài 6:
Phương trình hoành độ giao điểm là:
\(ax^2+4x+4=0\)
\(\text{Δ}=16-16a\)
Để (P) tiếp xúc với (d) thì 16-16a=0
hay a=1
Bài 1:
a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m=-5m⋮5\Rightarrow dpcm\)
\(m\left(2m-3\right)-2m\left(m+1\right)\)
\(=2m^2-3m-2m^2-2m\)
\(=-5m⋮5\) \(\forall m\in Z\)
Vậy \(m\left(2m-3\right)-2m\left(m+1\right)⋮m\left(\forall m\in Z\right)\)
a) Ta có \(\frac{\sqrt{x}}{x-1}+\frac{\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}+\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\)
\(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}=\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
Khi đó P = \(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}:\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x\left(\sqrt{x}+1\right)}{x-1}=\frac{x}{\sqrt{x}-1}\)
b) Để P = -1/2
=> \(\frac{x}{\sqrt{x}-1}=-\frac{1}{2}\)
=> \(2x+\sqrt{x}-1=0\)
<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)
<=> \(2\sqrt{x}-1=0\)
<=> \(x=\frac{1}{4}\)(tm)
Vậy x = 1/4
c) Nhận thấy \(\sqrt{P}\)đạt MIN khi P \(>0\Rightarrow x>1\)
Khi đó \(P=\frac{x}{\sqrt{x}-1}=\frac{4\sqrt{x}-4+x-4\sqrt{x}+4}{\sqrt{x}-1}=4+\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}\ge4\)
=> Min \(\sqrt{P}=2\)
Dấu "=" xảy ra <=> x = 4
Vậy Min \(\sqrt{P}\)= 2 khi x = 4
\(P=\left(\frac{\sqrt{x}}{x-1}+\frac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)\(\left(x>0;x\ne1\right)\)
\(P=\left[\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)\(:\left[\frac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
\(P=\left[\frac{\sqrt{x}+x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\right]\)
\(P=\frac{\left(x+2\sqrt{x}\right)x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}\)
\(P=\frac{x}{\sqrt{x}-1}\)
b) Để \(P=-\frac{1}{2}\)thì \(\frac{x}{\sqrt{x}-1}=\frac{-1}{2}\Rightarrow2x=1-\sqrt{x}\Leftrightarrow2x+\sqrt{x}-1=0\Leftrightarrow2x+2\sqrt{x}-\sqrt{x}-1=0\)
\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)=0\Leftrightarrow\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\2\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=\frac{1}{2}\end{cases}\Leftrightarrow}x=\frac{1}{4}\left(nhận\right)}\)
Vậy để P = -1/2 thì x = 1/4