K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

Tham khảo: Bài 4.8 trang 211 Sách bài tập Đại số và giải tích 11: Chứng minh rằng với |x| rất bé so với

2 tháng 11 2021

Tham khảo cách giải:

Đặt \(x\left(y\right)=\sqrt{a^2+x}\) ta có:

\(y'\left(x\right)=\dfrac{\left(a^2+x\right)'}{2\sqrt{a^2+x}}=\dfrac{1}{2\sqrt{a^2+x}}\)

Từ đó:

\(\Delta y=y\left(x\right)-y\left(0\right)\approx y'\left(0\right)x\)

\(\Rightarrow\sqrt{a^2+x}-\sqrt{a^2+0}\approx\dfrac{1}{2\sqrt{a^2+0}}x\)

\(\Rightarrow\sqrt{a^2+x}-a\approx\dfrac{x}{2a}\)

\(\Rightarrow\sqrt{a^2+x}\approx a+\dfrac{x}{2a}\)

Áp dụng :

\(\sqrt{146}=\sqrt{12^2+2}\)

\(\approx12+\dfrac{2}{2.12}\approx12,0833\)

19 tháng 9 2019

Hình vẽ đâu bạn? Đào Thị Thanh Huyền

19 tháng 9 2019

He he mk quên zs lại mk cũng tìm đc bài ròi thanks bn ah bao giờ có j bn giúp nhen