CMR: 1/2! + 1/3! + 1/4! +...+ 1/2020! < 1
Với n! = 1; 2; 3; 4;...; n (Đọc "n giai thừa")
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{2020!}\)
Ta có : \(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}=\frac{1}{1.2.3}< \frac{1}{2.3}\)
\(\frac{1}{4!}=\frac{1}{1.2.3.4}< \frac{1}{3.4}\)
...
\(\frac{1}{2020!}=\frac{1}{1.2.3...2020}< \frac{1}{2019.2020}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A< 1-\frac{1}{2020}< 1\)
\(\Rightarrow\)A<1
Vậy A<1.
Mik làm giống bạn đs ó
P/s ; ko chắc
1/2! + 2/3! + 3/4! + ... + 2019/2020!
= (2-1) /2! + (3-1)/3! +(4-1)/4! +....+ (2019-1)/2019! + (2020-1)/2020!
= 2/2! -1/2! + 3/3! -1/3! + 4/4! -1/4! +..........+ 2019/2019! -1/2019! +2020/2020! -1/2020!
= 1/1! -1/2! + 1/2! -1/3! + 1/3! -1/4! +........+ 1/2018! -1/2019! +1/2019! -1/2020!
=1 -1/2020! <1
Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-.........-\frac{1}{2020^2}\)
Ta có: \(2^2=2.2< 2.3\)\(\Rightarrow\frac{1}{2.2}>\frac{1}{2.3}\)\(\Rightarrow\frac{1}{2^2}>\frac{1}{2.3}\)
Tương tự, ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\), ........... , \(\frac{1}{2020^2}>\frac{1}{2020.2021}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-...........-\frac{1}{2020.2021}\)
\(=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-.......-\left(\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-..........-\frac{1}{2020}+\frac{1}{2021}\)
\(=1-\frac{1}{2}+\frac{1}{2021}\)\(=\frac{1}{2}+\frac{1}{2021}=\frac{2023}{4042}>\frac{1}{2020}\)
\(\Rightarrow A>\frac{1}{2020}\)
Viết sai rồi n!=1.2.3...n
Ta có \(\frac{1}{n!}=\frac{\left(n-1\right)!}{n!.\left(n-1\right)!}< \frac{\left(n-1\right).\left(n-1\right)!}{n!.\left(n-1\right)!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
=> \(\frac{1}{2!}+\frac{1}{3!}+...\frac{1}{2020!}< \frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{2018!}-\frac{1}{2019!}+\frac{1}{2019!}-\frac{1}{2020!}\)
=> \(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2020!}< 1-\frac{1}{2020!}< 1\)(ĐPCM)