a +b -b x a =10 | a=5 |
a x2 +b=45 | a=7 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề :
\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)
\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)
\(x^4=\left(a+b\right)^4\)
b) Sửa đề:
\(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)
\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)
\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)
\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)
\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)
\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)
\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)
\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)
\(x^5=\left(a+b\right)^5\)
Bạn có thể tự tóm tắt lại
a) Ta có :
10a + 11 = 2.5a + 25 - 14
= 2.5a + 5.5 - 14
= 5.(2a + 5) - 14
Mà 2a + 5 chia hết cho 7
đồng thời 14 cũng chia hết cho 7
=> 10a + 11 chia hết cho 7
a/ Ta có:\(2a+5⋮7\Leftrightarrow10a+25⋮7\)
\(\Leftrightarrow10a+25-14⋮7\)(vì \(14⋮7\)và \(10a+25⋮7\))
\(\Leftrightarrow10a+11⋮7\)(đpcm)
b/ Ta có:\(a+5b⋮3\Leftrightarrow5a+25b⋮3\)
\(\Leftrightarrow5a+25b-24b⋮3\)(vì \(24b⋮3\)và \(5a+25b⋮3\))
\(\Leftrightarrow5a+b⋮3\)(đpcm)
nhớ kich nếu bạn thấy đây là một lời giải đúng :)
\(\dfrac{ab+a^2}{b^2-5b+5a-a^2}\cdot\dfrac{a^2-10a+25-b^2}{a^2-b^2}\)
\(=\dfrac{a\left(a+b\right)}{\left(b^2-a^2\right)-\left(5b-5a\right)}\cdot\dfrac{\left(a-5\right)^2-b^2}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a\left(a+b\right)}{\left(b-a\right)\left(b+a\right)-5\left(b-a\right)}\cdot\dfrac{\left(a-5-b\right)\left(a-5+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a}{a-b}\cdot\dfrac{\left(a-b-5\right)\left(a+b-5\right)}{\left(b-a\right)\left(b+a-5\right)}\)
\(=\dfrac{a}{a-b}\cdot\dfrac{a-b-5}{b-a}=\dfrac{-a\left(a-b-5\right)}{\left(a-b\right)^2}\)
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
\(\dfrac{5a^2\left(a+b\right)^3}{10a\left(a+b\right)^2}=\dfrac{a\left(a+b\right)}{2}\)
1: =10(a^3-a)
=10a(a^2-1)
=10a(a-1)(a+1)
2: \(=5xy\left(1-8a^3b^3\right)\)
\(=5xy\left(1-2ab\right)\left(1+2ab+4a^2b^2\right)\)
3: \(=5\left(a^2+2ab+b^2\right)=5\left(a+b\right)^2\)
4: \(=6\left(p^2-2p+1\right)=6\left(p-1\right)^2\)
5: =(m+n)^2-p^2
=(m+n-p)(m+n+p)
6: =2(27x^3+8y^3)
=2(3x+2y)(9x^2-6xy+4y^2)
1) 10a³ - 10a
= 10a(a² - 1)
= 10a(a - 1)(a + 1)
2) 5xy - 40a³b³xy
= 5xy(1 - 8a³b³)
= 5xy(1 - 2ab)(1 + 2ab + 4a²b²)
3) 5a² + 10ab + 5b²
= 5(a² + 2ab + b²)
= 5(a + b)²
4) 6p² - 12p + 6
= 6(p² - 2p + 1)
= 6(p - 1)²
5) m² + 2mn + n² - p²
= (m + n)² - p²
= (m + n - p)(m + n + p)
6) 54x³ + 16y³
= 2(27x³ + 8y³)
= 2[(3x)³ + (2y)³]
= 2(3x + 2y)(9x² - 6xy + 4y²)
7) Sửa đề:
1 - m² + 2mn - n²
= 1 - (m² - 2mn + n²)
= 1 - (m - n)²
= (1 + m - n)(1 - m + n)
Bài 1:
a) x3 - 3x2 + 3x - 1 + 2(x2 - x)
= (x - 1)3 + 2x(x - 1)
= (x - 1)[(x - 1)2 + 2x]
= (x - 1)(x2 - 2x + 1 + 2x)
= (x - 1)(x2 + 1)
b) 36 - 4a2 + 20ab - 25b2
= 36 - (2a - 5b)2
= (6 - 2a + 5b)(6 + 2a - 5b)
c) 5a3 - 10a2b + 5ab2 - 10a + 10b
= 5(a3 - 2a2b + ab2 - 2a + 2b)
= 5[a(a2 - 2ab + b2) - 2(a - b)]
= 5[a(a - b)2 - 2(a - b)]
= 5(a - b)(a2 - ab - 2)