K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

\(x^2+\left(x-1\right)\left(3-x\right)>0\)

\(\Leftrightarrow x^2+3x-x^2-3+x>0\)

\(\Leftrightarrow4x-3>0=>4x>3=>x>\frac{3}{4}\)

dễ 

26 tháng 4 2022

\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow2>0\)

Vậy \(S=\left\{2\right\}\)

26 tháng 4 2022

-ĐKXĐ: \(x\ne3\)

\(\dfrac{x-1}{x-3}>1\)

\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow\dfrac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

-Vậy tập nghiệm của BĐT là {x l x>3}

16 tháng 4 2021

a, \(x^2\)≥1

\(\Leftrightarrow\) x>1

b, \(x^2\)<1

\(\Rightarrow\) x∈∅

c, \(x^2\)+3x ≥ 0

\(\Leftrightarrow\) \(x^2\)≥-3x

\(\Leftrightarrow\) x≥-3

d, \(x^2\)+3x+3≥0

\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)

\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0

\(\Leftrightarrow\)\(x^2\)\(\dfrac{9}{4}\)

\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)

 

25 tháng 5 2021

\(x-4\sqrt{x-2}+1=0\)(Đk x>2)

\(x-2-4\sqrt{x-2}+4-1=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-3=0\\\sqrt{x-2}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=9\\x-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)(thảo đk)

Vậy\(\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)là nghiệm của pt

25 tháng 5 2021

undefined

11 tháng 5 2021

`x(4x-4)-32>4x(x+1)`

`<=>4x^2-4x-32>4x^2+4x`

`<=>8x<-32`

`<=>x<-4`

Vậy `S={x|x<-4}`

15 tháng 5 2021

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022

17 tháng 8 2021

\(x+\sqrt{9-x^2}-x\sqrt{9-x^2}=3\left(-3\le x\le3\right)\)

\(\Leftrightarrow\sqrt{9-x^2}-x\sqrt{9-x^2}=3-x\\ \Leftrightarrow9-x^2+x^2\left(9-x^2\right)-2x\sqrt{\left(9-x^2\right)^2}=9-6x+x^2\\ \Leftrightarrow9+8x^2-x^4-2x\left(9-x^2\right)=x^2-6x+9\\ \Leftrightarrow-x^4+2x^3+7x^2-12x=0\\ \Leftrightarrow-x\left(x^3-2x^2-7x+12\right)=0\Leftrightarrow-x\left(x^3-3x^2+x^2-3x-4x+12\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2+x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=3\left(N\right)\\x^2+x-4=0\left(1\right)\end{matrix}\right.\)

 \(\Delta\left(1\right)=1-4\left(-4\right)=17>0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{17}}{2}\left(N\right)\\x=\dfrac{-1+\sqrt{17}}{2}\left(N\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;3;\dfrac{-1-\sqrt{17}}{2};\dfrac{-1+\sqrt{17}}{2}\right\}\)

Tick ✔

29 tháng 6 2021

ĐKXĐ ; \(x\ne\pm1\)

Ta có : \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3}{1-x^2}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}+\dfrac{-x^2-3}{x^2-1}=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2-x^2-3=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-x^2-3=0\)

\(\Leftrightarrow-x^2+4x-3=0\)

\(\Leftrightarrow-x^2+3x+x-3=0\)

\(\Leftrightarrow-x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=1\left(L\right)\end{matrix}\right.\)

=> X = 3

Vậy ..

NV
7 tháng 4 2021

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4-\sqrt{5}\\x=4+\sqrt{5}\end{matrix}\right.\)