giải hệ phương trình : \(x^2+y^2+2\left(x+y\right)=7\) , y(y-2x)-2x=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+1=a\\y=b\end{cases}}\)
Thì ta có hệ ban đầu
\(\Leftrightarrow\hept{\begin{cases}1\left(a-1\right)\left(b^2+6\right)=b\left(a^2+1\right)\left(3\right)\\\left(b-1\right)\left(a^2+6\right)=a\left(b^2+1\right)\left(4\right)\end{cases}}\)
Trừ vế theo vế rồi thu gọn ta được
\(\left(a-b\right)\left(a+b-2ab+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\left(5\right)\\a+b-2ab+7=0\left(6\right)\end{cases}}\)
TH (5) thay vào (3) ta được
(a - 1)(a2 + 6) = a(a2 + 1)
<=> a2 - 5a + 6 = 0
\(\orbr{\begin{cases}a=2\\a=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
TH (6) ta lấy (3) và (4) trừ vế theo vế rồi rút gọn ta được
\(\left(a-\frac{5}{2}\right)^2+\left(b-\frac{5}{2}\right)^2=\frac{1}{2}\)
Kết hợp với (6) ta có hệ pt đối xứng loại I giải ra sẽ có nghiệm là
(a,b) = (2,2;3,3;2,3;3,2)
Giải bằng điện thoại nên dễ sai sót lắm bạn kiểm tra lại giúp m nhé
\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=7\\y^2-2xy-2x=10\end{matrix}\right.\)
\(\Rightarrow x^2+2xy+4x+2y=-3\)
\(\Leftrightarrow x^2+2\left(y+2\right)x+2y+3=0\)
\(\Delta'=\left(y+2\right)^2-\left(2y+3\right)=y^2+2y+1=\left(y+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=-\left(y+2\right)+y+1=-1\\x=-\left(y+2\right)-\left(y+1\right)=-2y-3\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu là được
=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21
=>2x-2y=-8 và x+y=0
=>x-y=-4 và x+y=0
=>2x=-4 và x+y=0
=>x=-2 và y=2
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Xét \(y=0\)\(\Rightarrow...\)
Xét \(y\ne0\). Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2), ta có:
\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)
\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)
\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)
Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành
\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)
b) Xét phương trình 2 có
(1-x2 )/(1+xy)2 - (x+y)2 - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2 -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2) -y2 =1
=>(1-x2)/(1-x2)(1-y2) -y2=1
=>1/(1-y2) -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
Thay y vào phương trình 1 là ra x
à nhầm ... sửa lại dòng 6
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2
=> 1=1-y4
=> y=0
=>x=3
=> x=-3
\(\hept{\begin{cases}x^2+y^2+2\left(x+y\right)=7\\y\left(y-2x\right)-2x=10\end{cases}}\)
<=> \(\hept{\begin{cases}\left(x+1\right)^2+\left(y+1\right)^2=9\\\left(y-x\right)^2-\left(x+1\right)^2=9\end{cases}}\)
Đặt: x + 1 = a và y + 1 = b ta có hẹ mới:
\(\hept{\begin{cases}a^2+b^2=9\left(1\right)\\\left(a-b\right)^2-a^2=9\left(2\right)\end{cases}}\)
(2)< => \(a^2-2ab+b^2-a^2=9\)
<=> \(9-2ab-a^2=9\)
<=> \(a^2+2ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-2b\end{cases}}\)
TH: a = 0 ta có: \(b^2=9\Leftrightarrow b=\pm3\)
Với a = 0 ; b = 3 => x = -1 ; y = 2 ( thử vào tm)
Với a = 0; b = - 3 => x = -1; y = -4 ( thử vào tm)
TH: a = - 2b thế vào ( 1) ta có: \(4b^2+b^2=9\Leftrightarrow5b^2=9\Leftrightarrow\orbr{\begin{cases}b=\frac{3\sqrt{5}}{5}\\b=-\frac{3\sqrt{5}}{5}\end{cases}}\)
Với \(b=\frac{3\sqrt{5}}{5}\)ta có: a = \(-\frac{6\sqrt{5}}{5}\)
=> x = \(-\frac{6\sqrt{5}}{5}-1\); y = \(\frac{3\sqrt{5}}{5}-1\)( thử lại thỏa mãn)
Với \(b=-\frac{3\sqrt{5}}{5}\) ta có: a = \(\frac{6\sqrt{5}}{5}\)
=> x = \(\frac{6\sqrt{5}}{5}-1\); y = \(-\frac{3\sqrt{5}}{5}-1\)( thử lại thỏa mãn)
Ta có : \(\hept{\begin{cases}x^2+y^2+2\left(x+y\right)=7\left(1\right)\\y\left(y-2x\right)-2x=10\left(2\right)\end{cases}}\)
Lấy (1)- ( 2)
x2 +2xy + 4x + 2y + 3 = 0
<=> ( x2 + x ) + ( 2yx + 2y) + 3.( x + 1) =0
<=> ( x + 1 ) ( x + 2y + 3 ) = 0
<=> \(\orbr{\begin{cases}x=1\left(^∗\right)\\x=-2y-3\left(^∗^∗\right)\end{cases}}\)
Thay (*) vào ( 1)
=> 12 + y2 +2( 1+ y) -7 = 0
<=> y2 + 2y -4 = 0
<=> \(\orbr{\begin{cases}y_1=-1+\sqrt{5}\\y_2=-1-\sqrt{5}\end{cases}}\)
Thay ( **) vào (1)
(-2y-3)2 + y2 +2(-2y-3 + y) = 7
5y2 + 10y - 4 = 0
<=> \(\orbr{\begin{cases}y=\frac{-5+3\sqrt{5}}{5}\Rightarrow x=-\frac{5+6\sqrt{5}}{5}\\y=\frac{-5-3\sqrt{5}}{5}\Rightarrow x=-\frac{5+6\sqrt{5}}{5}\end{cases}}\)